File size: 5,026 Bytes
0f7c978
2b0230e
d1fe44b
 
 
 
2b0230e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f7c978
4726c7e
 
 
 
 
 
b41d174
 
8498ac2
d1fe44b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b0230e
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
license: cc-by-nc-4.0
library_name: transformers
tags:
- mergekit
- merge
base_model:
- Sao10K/Fimbulvetr-10.7B-v1
- saishf/Kuro-Lotus-10.7B
model-index:
- name: Fimbulvetr-Kuro-Lotus-10.7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 69.54
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 87.87
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 66.99
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 60.95
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 84.14
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 66.87
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B
      name: Open LLM Leaderboard
---
This model is a merge of my personal favourite models, i couldn't decide between them so why not have both? Without MOE cause gpu poor :3

With my own tests it gives kuro-lotus like results without the requirement for a highly detailed character card and stays coherent when roping up to 8K context.

I personally use the "Universal Light" preset in silly tavern, with "alpaca" the results can be short but are longer with "alpaca roleplay".

"Universal Light" preset can be extremely creative but sometimes likes to act for user with some cards, for those i like just the "default" but any preset seems to work!

  
# merge

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the SLERP merge method.

### Models Merged

The following models were included in the merge:
* [Sao10K/Fimbulvetr-10.7B-v1](https://huggingface.co/Sao10K/Fimbulvetr-10.7B-v1)
* [saishf/Kuro-Lotus-10.7B](https://huggingface.co/saishf/Kuro-Lotus-10.7B)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
slices:
  - sources:
      - model: saishf/Kuro-Lotus-10.7B
        layer_range: [0, 48]
      - model: Sao10K/Fimbulvetr-10.7B-v1
        layer_range: [0, 48]
merge_method: slerp
base_model: saishf/Kuro-Lotus-10.7B
parameters:
  t:
    - filter: self_attn
      value: [0.6, 0.7, 0.8, 0.9, 1]
    - filter: mlp
      value: [0.4, 0.3, 0.2, 0.1, 0]
    - value: 0.5
dtype: bfloat16

```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_saishf__Fimbulvetr-Kuro-Lotus-10.7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |72.73|
|AI2 Reasoning Challenge (25-Shot)|69.54|
|HellaSwag (10-Shot)              |87.87|
|MMLU (5-Shot)                    |66.99|
|TruthfulQA (0-shot)              |60.95|
|Winogrande (5-shot)              |84.14|
|GSM8k (5-shot)                   |66.87|