File size: 2,816 Bytes
92f0e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- f1
- precision
- recall
- accuracy
model-index:
- name: debert-imeocap
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# debert-imeocap
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3914
- F1: 0.6372
- Precision: 0.6448
- Recall: 0.6365
- Accuracy: 0.6365
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:|
| 1.5405 | 1.0 | 74 | 1.4488 | 0.3206 | 0.2386 | 0.4885 | 0.4885 |
| 1.3156 | 2.0 | 148 | 1.1964 | 0.5541 | 0.5627 | 0.575 | 0.575 |
| 1.0728 | 3.0 | 222 | 1.1077 | 0.6001 | 0.6189 | 0.5981 | 0.5981 |
| 0.9239 | 4.0 | 296 | 1.0742 | 0.6324 | 0.6361 | 0.6365 | 0.6365 |
| 0.7802 | 5.0 | 370 | 1.0834 | 0.6073 | 0.6333 | 0.6058 | 0.6058 |
| 0.661 | 6.0 | 444 | 1.1733 | 0.5984 | 0.6166 | 0.5962 | 0.5962 |
| 0.602 | 7.0 | 518 | 1.1786 | 0.5911 | 0.6193 | 0.5885 | 0.5885 |
| 0.5391 | 8.0 | 592 | 1.2171 | 0.6156 | 0.6251 | 0.6154 | 0.6154 |
| 0.4815 | 9.0 | 666 | 1.2566 | 0.6259 | 0.6399 | 0.625 | 0.625 |
| 0.4548 | 10.0 | 740 | 1.2927 | 0.6233 | 0.6417 | 0.6212 | 0.6212 |
| 0.4538 | 11.0 | 814 | 1.2969 | 0.6385 | 0.6461 | 0.6385 | 0.6385 |
| 0.4119 | 12.0 | 888 | 1.3455 | 0.6376 | 0.6464 | 0.6365 | 0.6365 |
| 0.3968 | 13.0 | 962 | 1.3709 | 0.6304 | 0.6413 | 0.6288 | 0.6288 |
| 0.352 | 14.0 | 1036 | 1.3823 | 0.6246 | 0.6360 | 0.6231 | 0.6231 |
| 0.3551 | 15.0 | 1110 | 1.3914 | 0.6372 | 0.6448 | 0.6365 | 0.6365 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|