File size: 2,816 Bytes
92f0e16 ddad4a4 92f0e16 ddad4a4 92f0e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- f1
- precision
- recall
- accuracy
model-index:
- name: debert-imeocap
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# debert-imeocap
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8660
- F1: 0.6185
- Precision: 0.6337
- Recall: 0.6154
- Accuracy: 0.6154
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:|
| 0.4637 | 1.0 | 74 | 1.3864 | 0.6129 | 0.6262 | 0.6115 | 0.6115 |
| 0.3815 | 2.0 | 148 | 1.3801 | 0.6193 | 0.6348 | 0.6173 | 0.6173 |
| 0.3363 | 3.0 | 222 | 1.6944 | 0.6077 | 0.6297 | 0.6077 | 0.6077 |
| 0.31 | 4.0 | 296 | 1.6945 | 0.5995 | 0.6285 | 0.5942 | 0.5942 |
| 0.2885 | 5.0 | 370 | 1.5945 | 0.6218 | 0.6306 | 0.6192 | 0.6192 |
| 0.2594 | 6.0 | 444 | 1.7662 | 0.6279 | 0.6396 | 0.625 | 0.625 |
| 0.2319 | 7.0 | 518 | 1.7093 | 0.6210 | 0.6321 | 0.6173 | 0.6173 |
| 0.2306 | 8.0 | 592 | 1.8068 | 0.6279 | 0.6341 | 0.6288 | 0.6288 |
| 0.2167 | 9.0 | 666 | 1.7306 | 0.6376 | 0.6444 | 0.6346 | 0.6346 |
| 0.2158 | 10.0 | 740 | 1.8745 | 0.6262 | 0.6318 | 0.6269 | 0.6269 |
| 0.222 | 11.0 | 814 | 1.8323 | 0.6200 | 0.6348 | 0.6173 | 0.6173 |
| 0.2152 | 12.0 | 888 | 1.8576 | 0.6246 | 0.6363 | 0.6212 | 0.6212 |
| 0.226 | 13.0 | 962 | 1.8880 | 0.6343 | 0.6411 | 0.6308 | 0.6308 |
| 0.2097 | 14.0 | 1036 | 1.8884 | 0.6152 | 0.6326 | 0.6115 | 0.6115 |
| 0.2192 | 15.0 | 1110 | 1.8660 | 0.6185 | 0.6337 | 0.6154 | 0.6154 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|