File size: 1,742 Bytes
b78ca03 e78cb2d b78ca03 e78cb2d b78ca03 e78cb2d b78ca03 e78cb2d b78ca03 e78cb2d b78ca03 e78cb2d b78ca03 e78cb2d b78ca03 e78cb2d b78ca03 e78cb2d b78ca03 e78cb2d b78ca03 e78cb2d b78ca03 e78cb2d b78ca03 e78cb2d b78ca03 e78cb2d b78ca03 e78cb2d b78ca03 e78cb2d b78ca03 e78cb2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- f1
model-index:
- name: distil-bert
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: F1
type: f1
value: 0.9295002701213645
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distil-bert
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1749
- F1: 0.9295
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.8295 | 1.0 | 250 | 0.2760 | 0.9148 |
| 0.2167 | 2.0 | 500 | 0.1838 | 0.9326 |
| 0.1461 | 3.0 | 750 | 0.1749 | 0.9295 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|