salbatarni
commited on
Commit
•
ddfab04
1
Parent(s):
b8b8649
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: aubmindlab/bert-base-arabertv02
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: arabert_baseline_organization_task1_fold0
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# arabert_baseline_organization_task1_fold0
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.7080
|
18 |
+
- Qwk: 0.6596
|
19 |
+
- Mse: 0.7206
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 2e-05
|
39 |
+
- train_batch_size: 16
|
40 |
+
- eval_batch_size: 16
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 10
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
|
49 |
+
|:-------------:|:------:|:----:|:---------------:|:-------:|:------:|
|
50 |
+
| No log | 0.3333 | 2 | 4.7375 | -0.0187 | 4.6528 |
|
51 |
+
| No log | 0.6667 | 4 | 2.9523 | 0.0354 | 2.8976 |
|
52 |
+
| No log | 1.0 | 6 | 1.9933 | 0.0369 | 1.9520 |
|
53 |
+
| No log | 1.3333 | 8 | 1.4358 | 0.1414 | 1.4243 |
|
54 |
+
| No log | 1.6667 | 10 | 1.3507 | 0.0742 | 1.3574 |
|
55 |
+
| No log | 2.0 | 12 | 1.2869 | 0.3309 | 1.2992 |
|
56 |
+
| No log | 2.3333 | 14 | 1.3060 | 0.4324 | 1.3235 |
|
57 |
+
| No log | 2.6667 | 16 | 1.2124 | 0.4085 | 1.2278 |
|
58 |
+
| No log | 3.0 | 18 | 1.0567 | 0.4854 | 1.0647 |
|
59 |
+
| No log | 3.3333 | 20 | 0.9500 | 0.4639 | 0.9565 |
|
60 |
+
| No log | 3.6667 | 22 | 0.8719 | 0.5769 | 0.8846 |
|
61 |
+
| No log | 4.0 | 24 | 0.7991 | 0.5769 | 0.8115 |
|
62 |
+
| No log | 4.3333 | 26 | 0.7537 | 0.5769 | 0.7666 |
|
63 |
+
| No log | 4.6667 | 28 | 0.7147 | 0.5514 | 0.7274 |
|
64 |
+
| No log | 5.0 | 30 | 0.6387 | 0.5811 | 0.6471 |
|
65 |
+
| No log | 5.3333 | 32 | 0.6221 | 0.5748 | 0.6286 |
|
66 |
+
| No log | 5.6667 | 34 | 0.6363 | 0.5811 | 0.6453 |
|
67 |
+
| No log | 6.0 | 36 | 0.6849 | 0.5811 | 0.6955 |
|
68 |
+
| No log | 6.3333 | 38 | 0.6868 | 0.5811 | 0.6971 |
|
69 |
+
| No log | 6.6667 | 40 | 0.6843 | 0.5435 | 0.6932 |
|
70 |
+
| No log | 7.0 | 42 | 0.7048 | 0.5081 | 0.7131 |
|
71 |
+
| No log | 7.3333 | 44 | 0.7116 | 0.5804 | 0.7201 |
|
72 |
+
| No log | 7.6667 | 46 | 0.7162 | 0.5779 | 0.7250 |
|
73 |
+
| No log | 8.0 | 48 | 0.7262 | 0.5779 | 0.7360 |
|
74 |
+
| No log | 8.3333 | 50 | 0.7157 | 0.5779 | 0.7258 |
|
75 |
+
| No log | 8.6667 | 52 | 0.7189 | 0.5779 | 0.7301 |
|
76 |
+
| No log | 9.0 | 54 | 0.7090 | 0.6547 | 0.7206 |
|
77 |
+
| No log | 9.3333 | 56 | 0.7059 | 0.6547 | 0.7179 |
|
78 |
+
| No log | 9.6667 | 58 | 0.7067 | 0.6547 | 0.7191 |
|
79 |
+
| No log | 10.0 | 60 | 0.7080 | 0.6596 | 0.7206 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.44.0
|
85 |
+
- Pytorch 2.4.0
|
86 |
+
- Datasets 2.21.0
|
87 |
+
- Tokenizers 0.19.1
|