--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_organization_task1_fold1 results: [] --- # arabert_baseline_organization_task1_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6156 - Qwk: 0.7263 - Mse: 0.5866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.3333 | 2 | 4.0016 | -0.0094 | 4.0420 | | No log | 0.6667 | 4 | 1.5678 | 0.0597 | 1.6106 | | No log | 1.0 | 6 | 1.1107 | 0.125 | 1.1443 | | No log | 1.3333 | 8 | 0.6987 | 0.2286 | 0.7156 | | No log | 1.6667 | 10 | 0.6381 | 0.4661 | 0.6469 | | No log | 2.0 | 12 | 0.5798 | 0.3984 | 0.5877 | | No log | 2.3333 | 14 | 0.4646 | 0.552 | 0.4642 | | No log | 2.6667 | 16 | 0.4683 | 0.6379 | 0.4526 | | No log | 3.0 | 18 | 0.4347 | 0.7154 | 0.4182 | | No log | 3.3333 | 20 | 0.4464 | 0.5977 | 0.4400 | | No log | 3.6667 | 22 | 0.4523 | 0.6957 | 0.4373 | | No log | 4.0 | 24 | 0.6917 | 0.7616 | 0.6664 | | No log | 4.3333 | 26 | 0.8197 | 0.7485 | 0.7888 | | No log | 4.6667 | 28 | 0.7131 | 0.7701 | 0.6829 | | No log | 5.0 | 30 | 0.7249 | 0.7154 | 0.6941 | | No log | 5.3333 | 32 | 0.8136 | 0.7572 | 0.7780 | | No log | 5.6667 | 34 | 0.9048 | 0.7347 | 0.8646 | | No log | 6.0 | 36 | 0.8073 | 0.7347 | 0.7664 | | No log | 6.3333 | 38 | 0.7257 | 0.7840 | 0.6853 | | No log | 6.6667 | 40 | 0.7345 | 0.7840 | 0.6936 | | No log | 7.0 | 42 | 0.7184 | 0.7263 | 0.6797 | | No log | 7.3333 | 44 | 0.6757 | 0.7263 | 0.6409 | | No log | 7.6667 | 46 | 0.7056 | 0.7042 | 0.6701 | | No log | 8.0 | 48 | 0.7177 | 0.7515 | 0.6822 | | No log | 8.3333 | 50 | 0.7076 | 0.7515 | 0.6730 | | No log | 8.6667 | 52 | 0.7003 | 0.7515 | 0.6663 | | No log | 9.0 | 54 | 0.6732 | 0.7515 | 0.6407 | | No log | 9.3333 | 56 | 0.6412 | 0.7042 | 0.6104 | | No log | 9.6667 | 58 | 0.6207 | 0.7263 | 0.5913 | | No log | 10.0 | 60 | 0.6156 | 0.7263 | 0.5866 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1