--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_relevance_task6_fold0 results: [] --- # arabert_baseline_relevance_task6_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4526 - Qwk: 0.3226 - Mse: 0.4526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 0.5 | 2 | 0.6801 | 0.0541 | 0.6801 | | No log | 1.0 | 4 | 0.6246 | 0.1127 | 0.6246 | | No log | 1.5 | 6 | 0.5719 | 0.2222 | 0.5719 | | No log | 2.0 | 8 | 0.4467 | 0.2222 | 0.4467 | | No log | 2.5 | 10 | 0.4958 | 0.3288 | 0.4958 | | No log | 3.0 | 12 | 0.4784 | 0.4324 | 0.4784 | | No log | 3.5 | 14 | 0.4142 | 0.5116 | 0.4142 | | No log | 4.0 | 16 | 0.4299 | 0.5977 | 0.4299 | | No log | 4.5 | 18 | 0.4577 | 0.58 | 0.4577 | | No log | 5.0 | 20 | 0.4773 | 0.5664 | 0.4773 | | No log | 5.5 | 22 | 0.4936 | 0.5664 | 0.4936 | | No log | 6.0 | 24 | 0.4974 | 0.5000 | 0.4974 | | No log | 6.5 | 26 | 0.5038 | 0.5088 | 0.5038 | | No log | 7.0 | 28 | 0.5060 | 0.3937 | 0.5060 | | No log | 7.5 | 30 | 0.4888 | 0.4444 | 0.4888 | | No log | 8.0 | 32 | 0.4685 | 0.4444 | 0.4685 | | No log | 8.5 | 34 | 0.4544 | 0.3226 | 0.4544 | | No log | 9.0 | 36 | 0.4497 | 0.3226 | 0.4497 | | No log | 9.5 | 38 | 0.4507 | 0.3226 | 0.4507 | | No log | 10.0 | 40 | 0.4526 | 0.3226 | 0.4526 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1