--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_relevance_task7_fold1 results: [] --- # arabert_baseline_relevance_task7_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1811 - Qwk: 0.4857 - Mse: 0.1829 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | No log | 0.3333 | 2 | 0.2365 | 0.3424 | 0.2296 | | No log | 0.6667 | 4 | 0.2621 | 0.4112 | 0.2567 | | No log | 1.0 | 6 | 0.3169 | 0.5670 | 0.3168 | | No log | 1.3333 | 8 | 0.3023 | 0.5145 | 0.2938 | | No log | 1.6667 | 10 | 0.2629 | 0.2310 | 0.2513 | | No log | 2.0 | 12 | 0.2208 | 0.4676 | 0.2109 | | No log | 2.3333 | 14 | 0.2071 | 0.5410 | 0.2005 | | No log | 2.6667 | 16 | 0.1961 | 0.5410 | 0.1905 | | No log | 3.0 | 18 | 0.1888 | 0.5093 | 0.1831 | | No log | 3.3333 | 20 | 0.1855 | 0.5093 | 0.1806 | | No log | 3.6667 | 22 | 0.1838 | 0.4967 | 0.1793 | | No log | 4.0 | 24 | 0.1870 | 0.4857 | 0.1820 | | No log | 4.3333 | 26 | 0.1864 | 0.4857 | 0.1822 | | No log | 4.6667 | 28 | 0.1812 | 0.4857 | 0.1788 | | No log | 5.0 | 30 | 0.1754 | 0.4857 | 0.1742 | | No log | 5.3333 | 32 | 0.1723 | 0.4967 | 0.1722 | | No log | 5.6667 | 34 | 0.1695 | 0.5695 | 0.1704 | | No log | 6.0 | 36 | 0.1654 | 0.5695 | 0.1667 | | No log | 6.3333 | 38 | 0.1652 | 0.5093 | 0.1667 | | No log | 6.6667 | 40 | 0.1707 | 0.4857 | 0.1722 | | No log | 7.0 | 42 | 0.1771 | 0.4857 | 0.1786 | | No log | 7.3333 | 44 | 0.1814 | 0.4857 | 0.1829 | | No log | 7.6667 | 46 | 0.1782 | 0.4857 | 0.1801 | | No log | 8.0 | 48 | 0.1775 | 0.5389 | 0.1799 | | No log | 8.3333 | 50 | 0.1799 | 0.5389 | 0.1824 | | No log | 8.6667 | 52 | 0.1801 | 0.5389 | 0.1825 | | No log | 9.0 | 54 | 0.1806 | 0.4857 | 0.1828 | | No log | 9.3333 | 56 | 0.1816 | 0.4857 | 0.1837 | | No log | 9.6667 | 58 | 0.1812 | 0.4857 | 0.1831 | | No log | 10.0 | 60 | 0.1811 | 0.4857 | 0.1829 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1