--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_vocabulary_task5_fold1 results: [] --- # arabert_baseline_vocabulary_task5_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5505 - Qwk: 0.6767 - Mse: 0.5505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | No log | 0.3333 | 2 | 3.3545 | 0.0255 | 3.3545 | | No log | 0.6667 | 4 | 1.6087 | 0.0 | 1.6087 | | No log | 1.0 | 6 | 0.8536 | 0.2689 | 0.8536 | | No log | 1.3333 | 8 | 0.7544 | 0.2289 | 0.7544 | | No log | 1.6667 | 10 | 0.6504 | 0.2689 | 0.6504 | | No log | 2.0 | 12 | 0.5598 | 0.3623 | 0.5598 | | No log | 2.3333 | 14 | 0.5291 | 0.3623 | 0.5291 | | No log | 2.6667 | 16 | 0.6356 | 0.4179 | 0.6356 | | No log | 3.0 | 18 | 0.8795 | 0.2857 | 0.8795 | | No log | 3.3333 | 20 | 0.7838 | 0.4434 | 0.7838 | | No log | 3.6667 | 22 | 0.5344 | 0.6809 | 0.5344 | | No log | 4.0 | 24 | 0.5107 | 0.6822 | 0.5107 | | No log | 4.3333 | 26 | 0.5455 | 0.6822 | 0.5455 | | No log | 4.6667 | 28 | 0.5959 | 0.6822 | 0.5959 | | No log | 5.0 | 30 | 0.6155 | 0.6091 | 0.6155 | | No log | 5.3333 | 32 | 0.5993 | 0.6146 | 0.5993 | | No log | 5.6667 | 34 | 0.6037 | 0.7028 | 0.6037 | | No log | 6.0 | 36 | 0.6613 | 0.6767 | 0.6613 | | No log | 6.3333 | 38 | 0.6632 | 0.7005 | 0.6632 | | No log | 6.6667 | 40 | 0.6185 | 0.6822 | 0.6185 | | No log | 7.0 | 42 | 0.5683 | 0.7028 | 0.5683 | | No log | 7.3333 | 44 | 0.5821 | 0.6040 | 0.5821 | | No log | 7.6667 | 46 | 0.5844 | 0.6040 | 0.5844 | | No log | 8.0 | 48 | 0.5500 | 0.6844 | 0.5500 | | No log | 8.3333 | 50 | 0.5326 | 0.7028 | 0.5326 | | No log | 8.6667 | 52 | 0.5428 | 0.6767 | 0.5428 | | No log | 9.0 | 54 | 0.5510 | 0.6767 | 0.5510 | | No log | 9.3333 | 56 | 0.5525 | 0.6767 | 0.5525 | | No log | 9.6667 | 58 | 0.5510 | 0.6767 | 0.5510 | | No log | 10.0 | 60 | 0.5505 | 0.6767 | 0.5505 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1