--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_organization_task1_fold1 results: [] --- # arabert_cross_organization_task1_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9574 - Qwk: 0.0360 - Mse: 0.9373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.0323 | 2 | 3.1928 | -0.0077 | 3.2127 | | No log | 0.0645 | 4 | 1.1180 | 0.0198 | 1.1153 | | No log | 0.0968 | 6 | 1.0643 | 0.0141 | 1.0568 | | No log | 0.1290 | 8 | 1.0400 | 0.0141 | 1.0308 | | No log | 0.1613 | 10 | 1.2588 | 0.0105 | 1.2534 | | No log | 0.1935 | 12 | 0.9630 | 0.0141 | 0.9539 | | No log | 0.2258 | 14 | 0.8031 | 0.0767 | 0.7906 | | No log | 0.2581 | 16 | 0.8516 | 0.1009 | 0.8359 | | No log | 0.2903 | 18 | 0.9617 | -0.0197 | 0.9430 | | No log | 0.3226 | 20 | 1.0261 | -0.0057 | 1.0047 | | No log | 0.3548 | 22 | 1.0994 | -0.0299 | 1.0758 | | No log | 0.3871 | 24 | 1.1080 | 0.0318 | 1.0834 | | No log | 0.4194 | 26 | 1.1282 | 0.0227 | 1.1033 | | No log | 0.4516 | 28 | 1.0113 | 0.0668 | 0.9885 | | No log | 0.4839 | 30 | 0.9879 | 0.0674 | 0.9663 | | No log | 0.5161 | 32 | 1.0596 | 0.0360 | 1.0373 | | No log | 0.5484 | 34 | 1.0864 | 0.0 | 1.0644 | | No log | 0.5806 | 36 | 1.0150 | 0.0 | 0.9946 | | No log | 0.6129 | 38 | 0.9073 | 0.0710 | 0.8891 | | No log | 0.6452 | 40 | 0.8557 | 0.0894 | 0.8386 | | No log | 0.6774 | 42 | 0.8437 | 0.1150 | 0.8269 | | No log | 0.7097 | 44 | 0.8440 | 0.1369 | 0.8270 | | No log | 0.7419 | 46 | 0.8463 | 0.1369 | 0.8291 | | No log | 0.7742 | 48 | 0.8397 | 0.1490 | 0.8226 | | No log | 0.8065 | 50 | 0.8535 | 0.1117 | 0.8359 | | No log | 0.8387 | 52 | 0.8803 | 0.0880 | 0.8619 | | No log | 0.8710 | 54 | 0.9170 | 0.0360 | 0.8978 | | No log | 0.9032 | 56 | 0.9334 | 0.0360 | 0.9139 | | No log | 0.9355 | 58 | 0.9400 | 0.0360 | 0.9203 | | No log | 0.9677 | 60 | 0.9514 | 0.0360 | 0.9315 | | No log | 1.0 | 62 | 0.9574 | 0.0360 | 0.9373 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1