--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_relevance_task5_fold2 results: [] --- # arabert_cross_relevance_task5_fold2 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3506 - Qwk: -0.0164 - Mse: 0.3512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.0317 | 2 | 0.4906 | -0.0037 | 0.4920 | | No log | 0.0635 | 4 | 0.3371 | -0.0172 | 0.3371 | | No log | 0.0952 | 6 | 0.3335 | -0.0128 | 0.3335 | | No log | 0.1270 | 8 | 0.2836 | 0.0122 | 0.2837 | | No log | 0.1587 | 10 | 0.3153 | 0.0 | 0.3156 | | No log | 0.1905 | 12 | 0.2834 | 0.0 | 0.2838 | | No log | 0.2222 | 14 | 0.2992 | 0.0 | 0.2996 | | No log | 0.2540 | 16 | 0.3898 | 0.0454 | 0.3898 | | No log | 0.2857 | 18 | 0.4736 | 0.0608 | 0.4735 | | No log | 0.3175 | 20 | 0.4950 | -0.0251 | 0.4949 | | No log | 0.3492 | 22 | 0.4696 | -0.0281 | 0.4697 | | No log | 0.3810 | 24 | 0.4030 | -0.0521 | 0.4033 | | No log | 0.4127 | 26 | 0.3436 | 0.0122 | 0.3443 | | No log | 0.4444 | 28 | 0.3297 | 0.0122 | 0.3305 | | No log | 0.4762 | 30 | 0.3336 | 0.0122 | 0.3344 | | No log | 0.5079 | 32 | 0.3536 | 0.0122 | 0.3541 | | No log | 0.5397 | 34 | 0.3706 | -0.0042 | 0.3710 | | No log | 0.5714 | 36 | 0.3495 | 0.0 | 0.3500 | | No log | 0.6032 | 38 | 0.3317 | 0.0 | 0.3323 | | No log | 0.6349 | 40 | 0.3188 | 0.0 | 0.3196 | | No log | 0.6667 | 42 | 0.3182 | 0.0 | 0.3190 | | No log | 0.6984 | 44 | 0.3248 | 0.0 | 0.3256 | | No log | 0.7302 | 46 | 0.3286 | 0.0 | 0.3294 | | No log | 0.7619 | 48 | 0.3328 | -0.0164 | 0.3336 | | No log | 0.7937 | 50 | 0.3347 | -0.0164 | 0.3354 | | No log | 0.8254 | 52 | 0.3404 | -0.0164 | 0.3411 | | No log | 0.8571 | 54 | 0.3437 | -0.0164 | 0.3444 | | No log | 0.8889 | 56 | 0.3441 | -0.0164 | 0.3448 | | No log | 0.9206 | 58 | 0.3444 | -0.0164 | 0.3450 | | No log | 0.9524 | 60 | 0.3482 | -0.0164 | 0.3488 | | No log | 0.9841 | 62 | 0.3506 | -0.0164 | 0.3512 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1