--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_relevance_task6_fold6 results: [] --- # arabert_cross_relevance_task6_fold6 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2708 - Qwk: 0.2181 - Mse: 0.2714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | No log | 0.0308 | 2 | 0.3997 | 0.1409 | 0.4004 | | No log | 0.0615 | 4 | 0.3224 | 0.1635 | 0.3230 | | No log | 0.0923 | 6 | 0.3114 | 0.1336 | 0.3118 | | No log | 0.1231 | 8 | 0.2792 | 0.1434 | 0.2797 | | No log | 0.1538 | 10 | 0.5126 | 0.1528 | 0.5116 | | No log | 0.1846 | 12 | 0.5725 | 0.1322 | 0.5710 | | No log | 0.2154 | 14 | 0.3291 | 0.2313 | 0.3295 | | No log | 0.2462 | 16 | 0.2709 | 0.2220 | 0.2712 | | No log | 0.2769 | 18 | 0.2704 | 0.1746 | 0.2703 | | No log | 0.3077 | 20 | 0.2714 | 0.1858 | 0.2712 | | No log | 0.3385 | 22 | 0.2684 | 0.2083 | 0.2682 | | No log | 0.3692 | 24 | 0.2725 | 0.2135 | 0.2725 | | No log | 0.4 | 26 | 0.2759 | 0.2135 | 0.2760 | | No log | 0.4308 | 28 | 0.2785 | 0.2173 | 0.2789 | | No log | 0.4615 | 30 | 0.2798 | 0.1719 | 0.2803 | | No log | 0.4923 | 32 | 0.2835 | 0.1711 | 0.2841 | | No log | 0.5231 | 34 | 0.2859 | 0.1750 | 0.2866 | | No log | 0.5538 | 36 | 0.2843 | 0.1681 | 0.2850 | | No log | 0.5846 | 38 | 0.2824 | 0.1738 | 0.2833 | | No log | 0.6154 | 40 | 0.2828 | 0.2186 | 0.2837 | | No log | 0.6462 | 42 | 0.2811 | 0.2161 | 0.2821 | | No log | 0.6769 | 44 | 0.2826 | 0.2239 | 0.2836 | | No log | 0.7077 | 46 | 0.2875 | 0.2181 | 0.2884 | | No log | 0.7385 | 48 | 0.2931 | 0.2181 | 0.2940 | | No log | 0.7692 | 50 | 0.2938 | 0.2181 | 0.2947 | | No log | 0.8 | 52 | 0.2942 | 0.2266 | 0.2950 | | No log | 0.8308 | 54 | 0.2868 | 0.2266 | 0.2876 | | No log | 0.8615 | 56 | 0.2800 | 0.2224 | 0.2808 | | No log | 0.8923 | 58 | 0.2751 | 0.2181 | 0.2758 | | No log | 0.9231 | 60 | 0.2725 | 0.2181 | 0.2732 | | No log | 0.9538 | 62 | 0.2712 | 0.2181 | 0.2718 | | No log | 0.9846 | 64 | 0.2708 | 0.2181 | 0.2714 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1