--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_vocabulary_task2_fold4 results: [] --- # arabert_cross_vocabulary_task2_fold4 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4047 - Qwk: 0.8288 - Mse: 0.4047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | No log | 0.0328 | 2 | 1.7452 | 0.0006 | 1.7452 | | No log | 0.0656 | 4 | 1.2370 | 0.1274 | 1.2370 | | No log | 0.0984 | 6 | 0.8329 | 0.4478 | 0.8329 | | No log | 0.1311 | 8 | 0.6416 | 0.5311 | 0.6416 | | No log | 0.1639 | 10 | 0.5045 | 0.6702 | 0.5045 | | No log | 0.1967 | 12 | 0.7393 | 0.7456 | 0.7393 | | No log | 0.2295 | 14 | 0.6764 | 0.7611 | 0.6764 | | No log | 0.2623 | 16 | 0.4405 | 0.7742 | 0.4405 | | No log | 0.2951 | 18 | 0.4529 | 0.6406 | 0.4529 | | No log | 0.3279 | 20 | 0.4250 | 0.6970 | 0.4250 | | No log | 0.3607 | 22 | 0.4454 | 0.8071 | 0.4454 | | No log | 0.3934 | 24 | 0.6139 | 0.7900 | 0.6139 | | No log | 0.4262 | 26 | 0.5738 | 0.7676 | 0.5738 | | No log | 0.4590 | 28 | 0.4153 | 0.7533 | 0.4153 | | No log | 0.4918 | 30 | 0.3615 | 0.7288 | 0.3615 | | No log | 0.5246 | 32 | 0.3546 | 0.7617 | 0.3546 | | No log | 0.5574 | 34 | 0.3710 | 0.7951 | 0.3710 | | No log | 0.5902 | 36 | 0.4183 | 0.8076 | 0.4183 | | No log | 0.6230 | 38 | 0.4794 | 0.8180 | 0.4794 | | No log | 0.6557 | 40 | 0.4977 | 0.8093 | 0.4977 | | No log | 0.6885 | 42 | 0.4901 | 0.8202 | 0.4901 | | No log | 0.7213 | 44 | 0.4251 | 0.8233 | 0.4251 | | No log | 0.7541 | 46 | 0.3869 | 0.8256 | 0.3869 | | No log | 0.7869 | 48 | 0.3765 | 0.8231 | 0.3765 | | No log | 0.8197 | 50 | 0.3956 | 0.8234 | 0.3956 | | No log | 0.8525 | 52 | 0.4092 | 0.8176 | 0.4092 | | No log | 0.8852 | 54 | 0.4118 | 0.8198 | 0.4118 | | No log | 0.9180 | 56 | 0.4170 | 0.8220 | 0.4170 | | No log | 0.9508 | 58 | 0.4094 | 0.8265 | 0.4094 | | No log | 0.9836 | 60 | 0.4047 | 0.8288 | 0.4047 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1