--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_vocabulary_task3_fold0 results: [] --- # arabert_cross_vocabulary_task3_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6808 - Qwk: 0.5680 - Mse: 0.6804 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.0323 | 2 | 4.4744 | -0.0256 | 4.4706 | | No log | 0.0645 | 4 | 2.3045 | 0.0249 | 2.3004 | | No log | 0.0968 | 6 | 1.2805 | 0.1391 | 1.2779 | | No log | 0.1290 | 8 | 1.0125 | 0.1335 | 1.0109 | | No log | 0.1613 | 10 | 1.0701 | 0.1914 | 1.0686 | | No log | 0.1935 | 12 | 1.2785 | 0.2037 | 1.2768 | | No log | 0.2258 | 14 | 1.2274 | 0.2479 | 1.2257 | | No log | 0.2581 | 16 | 1.0548 | 0.3135 | 1.0534 | | No log | 0.2903 | 18 | 0.9068 | 0.4200 | 0.9058 | | No log | 0.3226 | 20 | 0.8042 | 0.4719 | 0.8035 | | No log | 0.3548 | 22 | 0.7409 | 0.5318 | 0.7404 | | No log | 0.3871 | 24 | 0.7832 | 0.5356 | 0.7827 | | No log | 0.4194 | 26 | 0.8927 | 0.5031 | 0.8924 | | No log | 0.4516 | 28 | 1.1506 | 0.4441 | 1.1505 | | No log | 0.4839 | 30 | 1.4202 | 0.3909 | 1.4201 | | No log | 0.5161 | 32 | 1.1610 | 0.4441 | 1.1608 | | No log | 0.5484 | 34 | 0.8093 | 0.5444 | 0.8088 | | No log | 0.5806 | 36 | 0.6806 | 0.5981 | 0.6803 | | No log | 0.6129 | 38 | 0.6480 | 0.5752 | 0.6477 | | No log | 0.6452 | 40 | 0.6549 | 0.5691 | 0.6546 | | No log | 0.6774 | 42 | 0.7025 | 0.5317 | 0.7021 | | No log | 0.7097 | 44 | 0.7321 | 0.5105 | 0.7317 | | No log | 0.7419 | 46 | 0.7334 | 0.5066 | 0.7330 | | No log | 0.7742 | 48 | 0.7273 | 0.5221 | 0.7269 | | No log | 0.8065 | 50 | 0.7075 | 0.5309 | 0.7071 | | No log | 0.8387 | 52 | 0.6855 | 0.5374 | 0.6852 | | No log | 0.8710 | 54 | 0.6736 | 0.5635 | 0.6733 | | No log | 0.9032 | 56 | 0.6784 | 0.5680 | 0.6781 | | No log | 0.9355 | 58 | 0.6858 | 0.5657 | 0.6855 | | No log | 0.9677 | 60 | 0.6828 | 0.5669 | 0.6825 | | No log | 1.0 | 62 | 0.6808 | 0.5680 | 0.6804 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1