--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_vocabulary_task3_fold1 results: [] --- # arabert_cross_vocabulary_task3_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5285 - Qwk: 0.4405 - Mse: 0.5285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.0317 | 2 | 8.4052 | 0.0 | 8.4052 | | No log | 0.0635 | 4 | 5.1861 | -0.0063 | 5.1861 | | No log | 0.0952 | 6 | 2.9254 | 0.0185 | 2.9254 | | No log | 0.1270 | 8 | 1.8370 | 0.0864 | 1.8370 | | No log | 0.1587 | 10 | 1.1161 | 0.0869 | 1.1161 | | No log | 0.1905 | 12 | 0.8855 | 0.1061 | 0.8855 | | No log | 0.2222 | 14 | 1.2541 | 0.1523 | 1.2541 | | No log | 0.2540 | 16 | 1.9970 | 0.1566 | 1.9970 | | No log | 0.2857 | 18 | 1.0435 | 0.2378 | 1.0435 | | No log | 0.3175 | 20 | 0.6890 | 0.3618 | 0.6890 | | No log | 0.3492 | 22 | 0.5804 | 0.4399 | 0.5804 | | No log | 0.3810 | 24 | 0.5528 | 0.4709 | 0.5528 | | No log | 0.4127 | 26 | 0.5886 | 0.4445 | 0.5886 | | No log | 0.4444 | 28 | 0.8824 | 0.37 | 0.8824 | | No log | 0.4762 | 30 | 0.8947 | 0.3615 | 0.8947 | | No log | 0.5079 | 32 | 0.6729 | 0.4052 | 0.6729 | | No log | 0.5397 | 34 | 0.5355 | 0.4536 | 0.5355 | | No log | 0.5714 | 36 | 0.4786 | 0.4846 | 0.4786 | | No log | 0.6032 | 38 | 0.4704 | 0.4846 | 0.4704 | | No log | 0.6349 | 40 | 0.4945 | 0.4637 | 0.4945 | | No log | 0.6667 | 42 | 0.6100 | 0.4202 | 0.6100 | | No log | 0.6984 | 44 | 0.6733 | 0.3645 | 0.6733 | | No log | 0.7302 | 46 | 0.6704 | 0.3694 | 0.6704 | | No log | 0.7619 | 48 | 0.6390 | 0.3820 | 0.6390 | | No log | 0.7937 | 50 | 0.5726 | 0.4157 | 0.5726 | | No log | 0.8254 | 52 | 0.5435 | 0.4449 | 0.5435 | | No log | 0.8571 | 54 | 0.5097 | 0.4543 | 0.5097 | | No log | 0.8889 | 56 | 0.5010 | 0.4503 | 0.5010 | | No log | 0.9206 | 58 | 0.5122 | 0.4418 | 0.5122 | | No log | 0.9524 | 60 | 0.5275 | 0.4351 | 0.5275 | | No log | 0.9841 | 62 | 0.5285 | 0.4405 | 0.5285 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1