--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_vocabulary_task4_fold0 results: [] --- # arabert_cross_vocabulary_task4_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8406 - Qwk: 0.4869 - Mse: 0.8406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | No log | 0.0308 | 2 | 5.8006 | 0.0028 | 5.7935 | | No log | 0.0615 | 4 | 3.2764 | 0.0156 | 3.2707 | | No log | 0.0923 | 6 | 1.6565 | 0.1556 | 1.6520 | | No log | 0.1231 | 8 | 0.9711 | 0.1893 | 0.9685 | | No log | 0.1538 | 10 | 0.8861 | 0.2860 | 0.8838 | | No log | 0.1846 | 12 | 1.4789 | 0.1911 | 1.4759 | | No log | 0.2154 | 14 | 2.1319 | 0.1487 | 2.1287 | | No log | 0.2462 | 16 | 1.7196 | 0.2185 | 1.7170 | | No log | 0.2769 | 18 | 1.0076 | 0.3413 | 1.0063 | | No log | 0.3077 | 20 | 0.8904 | 0.3996 | 0.8897 | | No log | 0.3385 | 22 | 1.1149 | 0.3433 | 1.1142 | | No log | 0.3692 | 24 | 1.1193 | 0.3481 | 1.1188 | | No log | 0.4 | 26 | 0.9820 | 0.3962 | 0.9818 | | No log | 0.4308 | 28 | 0.8143 | 0.4684 | 0.8141 | | No log | 0.4615 | 30 | 0.8216 | 0.4725 | 0.8215 | | No log | 0.4923 | 32 | 1.0728 | 0.3944 | 1.0729 | | No log | 0.5231 | 34 | 1.2902 | 0.3621 | 1.2903 | | No log | 0.5538 | 36 | 1.1504 | 0.3826 | 1.1506 | | No log | 0.5846 | 38 | 0.9402 | 0.4417 | 0.9403 | | No log | 0.6154 | 40 | 0.8442 | 0.4861 | 0.8442 | | No log | 0.6462 | 42 | 0.8157 | 0.5097 | 0.8157 | | No log | 0.6769 | 44 | 0.7981 | 0.5175 | 0.7980 | | No log | 0.7077 | 46 | 0.8171 | 0.5105 | 0.8170 | | No log | 0.7385 | 48 | 0.9036 | 0.4947 | 0.9036 | | No log | 0.7692 | 50 | 0.9337 | 0.4808 | 0.9338 | | No log | 0.8 | 52 | 0.9430 | 0.4687 | 0.9432 | | No log | 0.8308 | 54 | 0.9279 | 0.4743 | 0.9280 | | No log | 0.8615 | 56 | 0.8904 | 0.4850 | 0.8905 | | No log | 0.8923 | 58 | 0.8610 | 0.4939 | 0.8610 | | No log | 0.9231 | 60 | 0.8424 | 0.4894 | 0.8424 | | No log | 0.9538 | 62 | 0.8388 | 0.4905 | 0.8388 | | No log | 0.9846 | 64 | 0.8406 | 0.4869 | 0.8406 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1