--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_vocabulary_task4_fold2 results: [] --- # arabert_cross_vocabulary_task4_fold2 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4786 - Qwk: 0.0414 - Mse: 1.4653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.0282 | 2 | 7.1347 | 0.0039 | 7.1562 | | No log | 0.0563 | 4 | 3.4551 | 0.0095 | 3.4688 | | No log | 0.0845 | 6 | 1.4618 | 0.0540 | 1.4670 | | No log | 0.1127 | 8 | 0.7258 | -0.0161 | 0.7252 | | No log | 0.1408 | 10 | 0.7701 | -0.0572 | 0.7709 | | No log | 0.1690 | 12 | 1.0250 | -0.0732 | 1.0315 | | No log | 0.1972 | 14 | 0.7175 | -0.0348 | 0.7181 | | No log | 0.2254 | 16 | 0.6112 | 0.0365 | 0.6099 | | No log | 0.2535 | 18 | 0.5589 | 0.0853 | 0.5572 | | No log | 0.2817 | 20 | 0.5273 | 0.0940 | 0.5251 | | No log | 0.3099 | 22 | 0.5480 | 0.0098 | 0.5432 | | No log | 0.3380 | 24 | 0.7106 | 0.0098 | 0.7034 | | No log | 0.3662 | 26 | 0.9344 | 0.0202 | 0.9253 | | No log | 0.3944 | 28 | 1.1676 | 0.1456 | 1.1562 | | No log | 0.4225 | 30 | 1.2628 | 0.1249 | 1.2507 | | No log | 0.4507 | 32 | 1.0404 | 0.1021 | 1.0296 | | No log | 0.4789 | 34 | 1.0395 | 0.1112 | 1.0292 | | No log | 0.5070 | 36 | 1.1961 | 0.1187 | 1.1868 | | No log | 0.5352 | 38 | 1.1022 | 0.1439 | 1.0951 | | No log | 0.5634 | 40 | 0.8840 | -0.0190 | 0.8791 | | No log | 0.5915 | 42 | 0.7380 | -0.0094 | 0.7349 | | No log | 0.6197 | 44 | 0.7231 | -0.0336 | 0.7198 | | No log | 0.6479 | 46 | 0.7578 | -0.0424 | 0.7530 | | No log | 0.6761 | 48 | 0.9652 | -0.0262 | 0.9566 | | No log | 0.7042 | 50 | 1.1114 | -0.1252 | 1.1008 | | No log | 0.7324 | 52 | 1.2059 | 0.0116 | 1.1948 | | No log | 0.7606 | 54 | 1.3383 | -0.0009 | 1.3265 | | No log | 0.7887 | 56 | 1.4278 | 0.0369 | 1.4156 | | No log | 0.8169 | 58 | 1.4154 | 0.0855 | 1.4032 | | No log | 0.8451 | 60 | 1.3691 | 0.1138 | 1.3571 | | No log | 0.8732 | 62 | 1.3963 | 0.0789 | 1.3841 | | No log | 0.9014 | 64 | 1.4466 | 0.0640 | 1.4340 | | No log | 0.9296 | 66 | 1.4766 | 0.0358 | 1.4637 | | No log | 0.9577 | 68 | 1.4844 | 0.0203 | 1.4712 | | No log | 0.9859 | 70 | 1.4786 | 0.0414 | 1.4653 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1