--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_vocabulary_task4_fold3 results: [] --- # arabert_cross_vocabulary_task4_fold3 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9487 - Qwk: 0.7917 - Mse: 0.9487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | No log | 0.0308 | 2 | 2.5656 | 0.1026 | 2.5656 | | No log | 0.0615 | 4 | 1.5800 | 0.2273 | 1.5800 | | No log | 0.0923 | 6 | 1.4668 | 0.3238 | 1.4668 | | No log | 0.1231 | 8 | 1.7439 | 0.5345 | 1.7439 | | No log | 0.1538 | 10 | 1.8731 | 0.5182 | 1.8731 | | No log | 0.1846 | 12 | 1.6136 | 0.5153 | 1.6136 | | No log | 0.2154 | 14 | 1.0770 | 0.6447 | 1.0770 | | No log | 0.2462 | 16 | 0.8334 | 0.6452 | 0.8334 | | No log | 0.2769 | 18 | 0.8987 | 0.6213 | 0.8987 | | No log | 0.3077 | 20 | 1.0528 | 0.6192 | 1.0528 | | No log | 0.3385 | 22 | 1.1536 | 0.6127 | 1.1536 | | No log | 0.3692 | 24 | 1.1237 | 0.6677 | 1.1237 | | No log | 0.4 | 26 | 1.0225 | 0.7612 | 1.0225 | | No log | 0.4308 | 28 | 0.9282 | 0.7931 | 0.9282 | | No log | 0.4615 | 30 | 0.8550 | 0.7997 | 0.8550 | | No log | 0.4923 | 32 | 0.8655 | 0.8051 | 0.8655 | | No log | 0.5231 | 34 | 0.8784 | 0.7955 | 0.8784 | | No log | 0.5538 | 36 | 0.9842 | 0.7843 | 0.9842 | | No log | 0.5846 | 38 | 0.9740 | 0.7860 | 0.9740 | | No log | 0.6154 | 40 | 0.9578 | 0.7855 | 0.9578 | | No log | 0.6462 | 42 | 0.8675 | 0.7868 | 0.8675 | | No log | 0.6769 | 44 | 0.8691 | 0.7893 | 0.8691 | | No log | 0.7077 | 46 | 0.9121 | 0.7886 | 0.9121 | | No log | 0.7385 | 48 | 0.9594 | 0.7961 | 0.9594 | | No log | 0.7692 | 50 | 0.9137 | 0.7879 | 0.9137 | | No log | 0.8 | 52 | 0.8811 | 0.7869 | 0.8811 | | No log | 0.8308 | 54 | 0.8791 | 0.7869 | 0.8791 | | No log | 0.8615 | 56 | 0.9161 | 0.7964 | 0.9161 | | No log | 0.8923 | 58 | 0.9349 | 0.7936 | 0.9349 | | No log | 0.9231 | 60 | 0.9520 | 0.7971 | 0.9520 | | No log | 0.9538 | 62 | 0.9575 | 0.7917 | 0.9575 | | No log | 0.9846 | 64 | 0.9487 | 0.7917 | 0.9487 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1