--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_vocabulary_task5_fold2 results: [] --- # arabert_cross_vocabulary_task5_fold2 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6937 - Qwk: 0.0 - Mse: 0.6827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.0317 | 2 | 4.6009 | 0.0009 | 4.6270 | | No log | 0.0635 | 4 | 1.4046 | -0.0070 | 1.4154 | | No log | 0.0952 | 6 | 0.7366 | -0.0031 | 0.7371 | | No log | 0.1270 | 8 | 0.6366 | -0.0370 | 0.6297 | | No log | 0.1587 | 10 | 0.7085 | -0.0259 | 0.6993 | | No log | 0.1905 | 12 | 0.7820 | -0.0140 | 0.7757 | | No log | 0.2222 | 14 | 0.7393 | -0.0458 | 0.7348 | | No log | 0.2540 | 16 | 0.5809 | 0.0613 | 0.5748 | | No log | 0.2857 | 18 | 0.5907 | 0.0 | 0.5826 | | No log | 0.3175 | 20 | 0.5968 | 0.0 | 0.5879 | | No log | 0.3492 | 22 | 0.5997 | 0.0 | 0.5907 | | No log | 0.3810 | 24 | 0.6179 | 0.0 | 0.6081 | | No log | 0.4127 | 26 | 0.6180 | 0.0 | 0.6082 | | No log | 0.4444 | 28 | 0.6050 | 0.0 | 0.5957 | | No log | 0.4762 | 30 | 0.6052 | 0.0 | 0.5959 | | No log | 0.5079 | 32 | 0.5967 | 0.0 | 0.5878 | | No log | 0.5397 | 34 | 0.6247 | 0.0 | 0.6152 | | No log | 0.5714 | 36 | 0.6697 | 0.0 | 0.6594 | | No log | 0.6032 | 38 | 0.7455 | 0.0 | 0.7341 | | No log | 0.6349 | 40 | 0.7874 | 0.0 | 0.7757 | | No log | 0.6667 | 42 | 0.7649 | 0.0 | 0.7537 | | No log | 0.6984 | 44 | 0.7194 | 0.0 | 0.7089 | | No log | 0.7302 | 46 | 0.6683 | 0.0 | 0.6584 | | No log | 0.7619 | 48 | 0.6472 | 0.0 | 0.6374 | | No log | 0.7937 | 50 | 0.6425 | 0.0 | 0.6324 | | No log | 0.8254 | 52 | 0.6567 | 0.0 | 0.6463 | | No log | 0.8571 | 54 | 0.6712 | 0.0 | 0.6605 | | No log | 0.8889 | 56 | 0.6746 | 0.0 | 0.6639 | | No log | 0.9206 | 58 | 0.6773 | 0.0 | 0.6666 | | No log | 0.9524 | 60 | 0.6866 | 0.0 | 0.6758 | | No log | 0.9841 | 62 | 0.6937 | 0.0 | 0.6827 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1