--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_vocabulary_task6_fold1 results: [] --- # arabert_cross_vocabulary_task6_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6146 - Qwk: 0.4250 - Mse: 0.6146 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | No log | 0.0328 | 2 | 3.4679 | 0.0168 | 3.4679 | | No log | 0.0656 | 4 | 1.6537 | 0.0514 | 1.6537 | | No log | 0.0984 | 6 | 1.1313 | 0.1099 | 1.1313 | | No log | 0.1311 | 8 | 0.9535 | 0.1805 | 0.9535 | | No log | 0.1639 | 10 | 1.0794 | 0.3174 | 1.0794 | | No log | 0.1967 | 12 | 0.6168 | 0.4395 | 0.6168 | | No log | 0.2295 | 14 | 0.6033 | 0.4645 | 0.6033 | | No log | 0.2623 | 16 | 0.6737 | 0.4499 | 0.6737 | | No log | 0.2951 | 18 | 1.0668 | 0.3641 | 1.0668 | | No log | 0.3279 | 20 | 1.3034 | 0.3203 | 1.3034 | | No log | 0.3607 | 22 | 1.0248 | 0.3778 | 1.0248 | | No log | 0.3934 | 24 | 0.6797 | 0.4447 | 0.6797 | | No log | 0.4262 | 26 | 0.6365 | 0.4647 | 0.6365 | | No log | 0.4590 | 28 | 0.7543 | 0.4079 | 0.7543 | | No log | 0.4918 | 30 | 1.0103 | 0.3524 | 1.0103 | | No log | 0.5246 | 32 | 0.8599 | 0.3860 | 0.8599 | | No log | 0.5574 | 34 | 0.6772 | 0.4252 | 0.6772 | | No log | 0.5902 | 36 | 0.5781 | 0.4282 | 0.5781 | | No log | 0.6230 | 38 | 0.5748 | 0.4282 | 0.5748 | | No log | 0.6557 | 40 | 0.6074 | 0.4195 | 0.6074 | | No log | 0.6885 | 42 | 0.6402 | 0.3992 | 0.6402 | | No log | 0.7213 | 44 | 0.7139 | 0.3932 | 0.7139 | | No log | 0.7541 | 46 | 0.7877 | 0.3858 | 0.7877 | | No log | 0.7869 | 48 | 0.7654 | 0.3896 | 0.7654 | | No log | 0.8197 | 50 | 0.6949 | 0.4032 | 0.6949 | | No log | 0.8525 | 52 | 0.6439 | 0.4209 | 0.6439 | | No log | 0.8852 | 54 | 0.6372 | 0.4216 | 0.6372 | | No log | 0.9180 | 56 | 0.6231 | 0.4191 | 0.6231 | | No log | 0.9508 | 58 | 0.6184 | 0.4250 | 0.6184 | | No log | 0.9836 | 60 | 0.6146 | 0.4250 | 0.6146 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1