--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_vocabulary_task6_fold2 results: [] --- # arabert_cross_vocabulary_task6_fold2 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7242 - Qwk: 0.0 - Mse: 0.7136 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.0299 | 2 | 3.2898 | -0.0072 | 3.3109 | | No log | 0.0597 | 4 | 1.5499 | 0.0064 | 1.5580 | | No log | 0.0896 | 6 | 0.8567 | -0.0149 | 0.8591 | | No log | 0.1194 | 8 | 0.5737 | -0.0086 | 0.5725 | | No log | 0.1493 | 10 | 0.5552 | -0.0146 | 0.5507 | | No log | 0.1791 | 12 | 0.5914 | -0.0252 | 0.5849 | | No log | 0.2090 | 14 | 0.5900 | 0.0 | 0.5831 | | No log | 0.2388 | 16 | 0.5625 | 0.0144 | 0.5568 | | No log | 0.2687 | 18 | 0.5553 | 0.0188 | 0.5497 | | No log | 0.2985 | 20 | 0.5729 | -0.0264 | 0.5693 | | No log | 0.3284 | 22 | 0.5862 | -0.0635 | 0.5833 | | No log | 0.3582 | 24 | 0.5679 | 0.0441 | 0.5643 | | No log | 0.3881 | 26 | 0.5625 | 0.0732 | 0.5588 | | No log | 0.4179 | 28 | 0.5473 | 0.0472 | 0.5424 | | No log | 0.4478 | 30 | 0.5608 | 0.0 | 0.5545 | | No log | 0.4776 | 32 | 0.6062 | 0.0 | 0.5987 | | No log | 0.5075 | 34 | 0.6492 | 0.0 | 0.6414 | | No log | 0.5373 | 36 | 0.6805 | 0.0 | 0.6725 | | No log | 0.5672 | 38 | 0.7145 | 0.0 | 0.7051 | | No log | 0.5970 | 40 | 0.7050 | 0.0 | 0.6949 | | No log | 0.6269 | 42 | 0.6899 | 0.0 | 0.6796 | | No log | 0.6567 | 44 | 0.7091 | 0.0 | 0.6986 | | No log | 0.6866 | 46 | 0.7298 | 0.0 | 0.7190 | | No log | 0.7164 | 48 | 0.7558 | 0.0 | 0.7450 | | No log | 0.7463 | 50 | 0.7596 | 0.0 | 0.7490 | | No log | 0.7761 | 52 | 0.7517 | 0.0 | 0.7414 | | No log | 0.8060 | 54 | 0.7385 | 0.0 | 0.7283 | | No log | 0.8358 | 56 | 0.7315 | 0.0 | 0.7211 | | No log | 0.8657 | 58 | 0.7354 | 0.0 | 0.7250 | | No log | 0.8955 | 60 | 0.7334 | 0.0 | 0.7229 | | No log | 0.9254 | 62 | 0.7299 | 0.0 | 0.7193 | | No log | 0.9552 | 64 | 0.7249 | 0.0 | 0.7143 | | No log | 0.9851 | 66 | 0.7242 | 0.0 | 0.7136 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1