--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_vocabulary_task7_fold3 results: [] --- # arabert_cross_vocabulary_task7_fold3 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7581 - Qwk: 0.0 - Mse: 0.7581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.0308 | 2 | 7.8306 | -0.0005 | 7.8306 | | No log | 0.0615 | 4 | 4.1936 | 0.0 | 4.1936 | | No log | 0.0923 | 6 | 2.0851 | 0.0593 | 2.0851 | | No log | 0.1231 | 8 | 1.2404 | 0.0 | 1.2404 | | No log | 0.1538 | 10 | 0.8586 | 0.0093 | 0.8586 | | No log | 0.1846 | 12 | 0.7508 | 0.0707 | 0.7508 | | No log | 0.2154 | 14 | 0.7356 | 0.0372 | 0.7356 | | No log | 0.2462 | 16 | 0.8138 | 0.1082 | 0.8138 | | No log | 0.2769 | 18 | 0.9262 | -0.0080 | 0.9262 | | No log | 0.3077 | 20 | 0.8710 | -0.0045 | 0.8710 | | No log | 0.3385 | 22 | 0.7502 | -0.0408 | 0.7502 | | No log | 0.3692 | 24 | 0.7389 | 0.0 | 0.7389 | | No log | 0.4 | 26 | 0.7855 | 0.0 | 0.7855 | | No log | 0.4308 | 28 | 0.7754 | 0.0 | 0.7754 | | No log | 0.4615 | 30 | 0.7485 | 0.0 | 0.7485 | | No log | 0.4923 | 32 | 0.7451 | 0.0 | 0.7451 | | No log | 0.5231 | 34 | 0.7615 | 0.0 | 0.7615 | | No log | 0.5538 | 36 | 0.7804 | 0.0 | 0.7804 | | No log | 0.5846 | 38 | 0.7731 | 0.0 | 0.7731 | | No log | 0.6154 | 40 | 0.7812 | 0.0 | 0.7812 | | No log | 0.6462 | 42 | 0.8026 | 0.0 | 0.8026 | | No log | 0.6769 | 44 | 0.8454 | 0.0 | 0.8454 | | No log | 0.7077 | 46 | 0.8541 | 0.0 | 0.8541 | | No log | 0.7385 | 48 | 0.8250 | 0.0 | 0.8250 | | No log | 0.7692 | 50 | 0.8021 | 0.0 | 0.8021 | | No log | 0.8 | 52 | 0.7828 | 0.0 | 0.7828 | | No log | 0.8308 | 54 | 0.7701 | 0.0 | 0.7701 | | No log | 0.8615 | 56 | 0.7633 | 0.0 | 0.7633 | | No log | 0.8923 | 58 | 0.7561 | 0.0 | 0.7561 | | No log | 0.9231 | 60 | 0.7554 | 0.0 | 0.7554 | | No log | 0.9538 | 62 | 0.7563 | 0.0 | 0.7563 | | No log | 0.9846 | 64 | 0.7581 | 0.0 | 0.7581 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1