--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_vocabulary_task7_fold5 results: [] --- # arabert_cross_vocabulary_task7_fold5 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4813 - Qwk: 0.8159 - Mse: 0.4813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | No log | 0.0328 | 2 | 1.7829 | 0.0226 | 1.7829 | | No log | 0.0656 | 4 | 1.0550 | 0.3246 | 1.0550 | | No log | 0.0984 | 6 | 1.2058 | 0.3390 | 1.2058 | | No log | 0.1311 | 8 | 1.2897 | 0.4716 | 1.2897 | | No log | 0.1639 | 10 | 0.7738 | 0.6671 | 0.7738 | | No log | 0.1967 | 12 | 0.4801 | 0.6113 | 0.4801 | | No log | 0.2295 | 14 | 0.4704 | 0.6859 | 0.4704 | | No log | 0.2623 | 16 | 0.6162 | 0.7884 | 0.6162 | | No log | 0.2951 | 18 | 0.8233 | 0.7575 | 0.8233 | | No log | 0.3279 | 20 | 0.8253 | 0.7631 | 0.8253 | | No log | 0.3607 | 22 | 0.6816 | 0.7772 | 0.6816 | | No log | 0.3934 | 24 | 0.6169 | 0.7875 | 0.6169 | | No log | 0.4262 | 26 | 0.6070 | 0.7969 | 0.6070 | | No log | 0.4590 | 28 | 0.5939 | 0.7990 | 0.5939 | | No log | 0.4918 | 30 | 0.5668 | 0.7902 | 0.5668 | | No log | 0.5246 | 32 | 0.5026 | 0.8069 | 0.5026 | | No log | 0.5574 | 34 | 0.5333 | 0.7935 | 0.5333 | | No log | 0.5902 | 36 | 0.6348 | 0.8099 | 0.6348 | | No log | 0.6230 | 38 | 0.7737 | 0.7826 | 0.7737 | | No log | 0.6557 | 40 | 0.7722 | 0.7861 | 0.7722 | | No log | 0.6885 | 42 | 0.6762 | 0.7874 | 0.6762 | | No log | 0.7213 | 44 | 0.5498 | 0.8024 | 0.5498 | | No log | 0.7541 | 46 | 0.4936 | 0.8014 | 0.4936 | | No log | 0.7869 | 48 | 0.4728 | 0.8025 | 0.4728 | | No log | 0.8197 | 50 | 0.4592 | 0.8048 | 0.4592 | | No log | 0.8525 | 52 | 0.4339 | 0.8081 | 0.4339 | | No log | 0.8852 | 54 | 0.4330 | 0.8048 | 0.4330 | | No log | 0.9180 | 56 | 0.4495 | 0.8048 | 0.4495 | | No log | 0.9508 | 58 | 0.4689 | 0.8114 | 0.4689 | | No log | 0.9836 | 60 | 0.4813 | 0.8159 | 0.4813 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1