sallywww commited on
Commit
77021bd
1 Parent(s): f9701ff

First model version

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +204 -0
  2. adapter_config.json +28 -0
  3. adapter_model.safetensors +3 -0
  4. checkpoint-100/README.md +204 -0
  5. checkpoint-100/adapter_config.json +28 -0
  6. checkpoint-100/adapter_model.safetensors +3 -0
  7. checkpoint-100/optimizer.pt +3 -0
  8. checkpoint-100/rng_state.pth +3 -0
  9. checkpoint-100/scheduler.pt +3 -0
  10. checkpoint-100/trainer_state.json +131 -0
  11. checkpoint-100/training_args.bin +3 -0
  12. checkpoint-120/README.md +204 -0
  13. checkpoint-120/adapter_config.json +28 -0
  14. checkpoint-120/adapter_model.safetensors +3 -0
  15. checkpoint-120/optimizer.pt +3 -0
  16. checkpoint-120/rng_state.pth +3 -0
  17. checkpoint-120/scheduler.pt +3 -0
  18. checkpoint-120/trainer_state.json +153 -0
  19. checkpoint-120/training_args.bin +3 -0
  20. checkpoint-140/README.md +204 -0
  21. checkpoint-140/adapter_config.json +28 -0
  22. checkpoint-140/adapter_model.safetensors +3 -0
  23. checkpoint-140/optimizer.pt +3 -0
  24. checkpoint-140/rng_state.pth +3 -0
  25. checkpoint-140/scheduler.pt +3 -0
  26. checkpoint-140/trainer_state.json +175 -0
  27. checkpoint-140/training_args.bin +3 -0
  28. checkpoint-160/README.md +204 -0
  29. checkpoint-160/adapter_config.json +28 -0
  30. checkpoint-160/adapter_model.safetensors +3 -0
  31. checkpoint-160/optimizer.pt +3 -0
  32. checkpoint-160/rng_state.pth +3 -0
  33. checkpoint-160/scheduler.pt +3 -0
  34. checkpoint-160/trainer_state.json +197 -0
  35. checkpoint-160/training_args.bin +3 -0
  36. checkpoint-180/README.md +204 -0
  37. checkpoint-180/adapter_config.json +28 -0
  38. checkpoint-180/adapter_model.safetensors +3 -0
  39. checkpoint-180/optimizer.pt +3 -0
  40. checkpoint-180/rng_state.pth +3 -0
  41. checkpoint-180/scheduler.pt +3 -0
  42. checkpoint-180/trainer_state.json +219 -0
  43. checkpoint-180/training_args.bin +3 -0
  44. checkpoint-20/README.md +204 -0
  45. checkpoint-20/adapter_config.json +28 -0
  46. checkpoint-20/adapter_model.safetensors +3 -0
  47. checkpoint-20/optimizer.pt +3 -0
  48. checkpoint-20/rng_state.pth +3 -0
  49. checkpoint-20/scheduler.pt +3 -0
  50. checkpoint-20/trainer_state.json +43 -0
README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: bigcode/starcoder
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bigcode/starcoder",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "c_proj",
23
+ "c_attn",
24
+ "q_attn"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_rslora": false
28
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e44ce263e6fd885f50d82ca515b9325375b43ee36ededb75acf161ce88bc2e41
3
+ size 48
checkpoint-100/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: bigcode/starcoder
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bigcode/starcoder",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "c_proj",
23
+ "c_attn",
24
+ "q_attn"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_rslora": false
28
+ }
checkpoint-100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e44ce263e6fd885f50d82ca515b9325375b43ee36ededb75acf161ce88bc2e41
3
+ size 48
checkpoint-100/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1feaae461eeadb5beb9c4062de583386b3387578fda1f3fd0bf0a01207bb3a6d
3
+ size 284628602
checkpoint-100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d90fab8063bac27bbc03ad7b8e96092834ee7799bc4eaae9ec98aa646a6358f6
3
+ size 14244
checkpoint-100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a1553fa3c9fa4158c1d95c29f303ea1c82da9959617b77d6296624e38c6ca27
3
+ size 1064
checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 8.16326530612245,
5
+ "eval_steps": 20,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.82,
13
+ "grad_norm": 0.18377472460269928,
14
+ "learning_rate": 2.9999999999999997e-05,
15
+ "loss": 1.861,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 1.63,
20
+ "grad_norm": 0.35202744603157043,
21
+ "learning_rate": 5.9999999999999995e-05,
22
+ "loss": 1.7263,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 1.63,
27
+ "eval_loss": 1.4457755088806152,
28
+ "eval_runtime": 89.8938,
29
+ "eval_samples_per_second": 4.305,
30
+ "eval_steps_per_second": 0.545,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 2.45,
35
+ "grad_norm": 0.928983747959137,
36
+ "learning_rate": 8.999999999999999e-05,
37
+ "loss": 1.1718,
38
+ "step": 30
39
+ },
40
+ {
41
+ "epoch": 3.27,
42
+ "grad_norm": 0.253262996673584,
43
+ "learning_rate": 0.00011999999999999999,
44
+ "loss": 0.4789,
45
+ "step": 40
46
+ },
47
+ {
48
+ "epoch": 3.27,
49
+ "eval_loss": 0.3332095146179199,
50
+ "eval_runtime": 89.9804,
51
+ "eval_samples_per_second": 4.301,
52
+ "eval_steps_per_second": 0.545,
53
+ "step": 40
54
+ },
55
+ {
56
+ "epoch": 4.08,
57
+ "grad_norm": 0.12236642092466354,
58
+ "learning_rate": 0.00015,
59
+ "loss": 0.3568,
60
+ "step": 50
61
+ },
62
+ {
63
+ "epoch": 4.9,
64
+ "grad_norm": 0.09160923212766647,
65
+ "learning_rate": 0.00017999999999999998,
66
+ "loss": 0.3256,
67
+ "step": 60
68
+ },
69
+ {
70
+ "epoch": 4.9,
71
+ "eval_loss": 0.2753114104270935,
72
+ "eval_runtime": 90.3206,
73
+ "eval_samples_per_second": 4.285,
74
+ "eval_steps_per_second": 0.543,
75
+ "step": 60
76
+ },
77
+ {
78
+ "epoch": 5.71,
79
+ "grad_norm": 0.10242326557636261,
80
+ "learning_rate": 0.00020999999999999998,
81
+ "loss": 0.2841,
82
+ "step": 70
83
+ },
84
+ {
85
+ "epoch": 6.53,
86
+ "grad_norm": 0.1305350810289383,
87
+ "learning_rate": 0.00023999999999999998,
88
+ "loss": 0.2615,
89
+ "step": 80
90
+ },
91
+ {
92
+ "epoch": 6.53,
93
+ "eval_loss": 0.2476309835910797,
94
+ "eval_runtime": 90.525,
95
+ "eval_samples_per_second": 4.275,
96
+ "eval_steps_per_second": 0.541,
97
+ "step": 80
98
+ },
99
+ {
100
+ "epoch": 7.35,
101
+ "grad_norm": 0.17941106855869293,
102
+ "learning_rate": 0.00027,
103
+ "loss": 0.2216,
104
+ "step": 90
105
+ },
106
+ {
107
+ "epoch": 8.16,
108
+ "grad_norm": 0.20095375180244446,
109
+ "learning_rate": 0.0003,
110
+ "loss": 0.1832,
111
+ "step": 100
112
+ },
113
+ {
114
+ "epoch": 8.16,
115
+ "eval_loss": 0.2350914180278778,
116
+ "eval_runtime": 90.3919,
117
+ "eval_samples_per_second": 4.281,
118
+ "eval_steps_per_second": 0.542,
119
+ "step": 100
120
+ }
121
+ ],
122
+ "logging_steps": 10,
123
+ "max_steps": 400,
124
+ "num_input_tokens_seen": 0,
125
+ "num_train_epochs": 34,
126
+ "save_steps": 20,
127
+ "total_flos": 5.738534596761354e+17,
128
+ "train_batch_size": 32,
129
+ "trial_name": null,
130
+ "trial_params": null
131
+ }
checkpoint-100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01be3c1366faeea704d7b18d02c117abdc170d0c96565a08a0f3ad9c5e7a123a
3
+ size 4856
checkpoint-120/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: bigcode/starcoder
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-120/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bigcode/starcoder",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "c_proj",
23
+ "c_attn",
24
+ "q_attn"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_rslora": false
28
+ }
checkpoint-120/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e44ce263e6fd885f50d82ca515b9325375b43ee36ededb75acf161ce88bc2e41
3
+ size 48
checkpoint-120/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:114dfd322ab013f62616a9a1cfb3c4b02ccf97f698e28bfa2a74a9f40856e99a
3
+ size 284628602
checkpoint-120/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5618ca5f563e0e88f407ba712395955e41529e4d54f3b9fc10e2af22327ec8cc
3
+ size 14244
checkpoint-120/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:915b81b2641ff3c1c29a91260eaebd9d13138742f1687cfcdc8c68bcb9ea698e
3
+ size 1064
checkpoint-120/trainer_state.json ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 9.795918367346939,
5
+ "eval_steps": 20,
6
+ "global_step": 120,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.82,
13
+ "grad_norm": 0.18377472460269928,
14
+ "learning_rate": 2.9999999999999997e-05,
15
+ "loss": 1.861,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 1.63,
20
+ "grad_norm": 0.35202744603157043,
21
+ "learning_rate": 5.9999999999999995e-05,
22
+ "loss": 1.7263,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 1.63,
27
+ "eval_loss": 1.4457755088806152,
28
+ "eval_runtime": 89.8938,
29
+ "eval_samples_per_second": 4.305,
30
+ "eval_steps_per_second": 0.545,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 2.45,
35
+ "grad_norm": 0.928983747959137,
36
+ "learning_rate": 8.999999999999999e-05,
37
+ "loss": 1.1718,
38
+ "step": 30
39
+ },
40
+ {
41
+ "epoch": 3.27,
42
+ "grad_norm": 0.253262996673584,
43
+ "learning_rate": 0.00011999999999999999,
44
+ "loss": 0.4789,
45
+ "step": 40
46
+ },
47
+ {
48
+ "epoch": 3.27,
49
+ "eval_loss": 0.3332095146179199,
50
+ "eval_runtime": 89.9804,
51
+ "eval_samples_per_second": 4.301,
52
+ "eval_steps_per_second": 0.545,
53
+ "step": 40
54
+ },
55
+ {
56
+ "epoch": 4.08,
57
+ "grad_norm": 0.12236642092466354,
58
+ "learning_rate": 0.00015,
59
+ "loss": 0.3568,
60
+ "step": 50
61
+ },
62
+ {
63
+ "epoch": 4.9,
64
+ "grad_norm": 0.09160923212766647,
65
+ "learning_rate": 0.00017999999999999998,
66
+ "loss": 0.3256,
67
+ "step": 60
68
+ },
69
+ {
70
+ "epoch": 4.9,
71
+ "eval_loss": 0.2753114104270935,
72
+ "eval_runtime": 90.3206,
73
+ "eval_samples_per_second": 4.285,
74
+ "eval_steps_per_second": 0.543,
75
+ "step": 60
76
+ },
77
+ {
78
+ "epoch": 5.71,
79
+ "grad_norm": 0.10242326557636261,
80
+ "learning_rate": 0.00020999999999999998,
81
+ "loss": 0.2841,
82
+ "step": 70
83
+ },
84
+ {
85
+ "epoch": 6.53,
86
+ "grad_norm": 0.1305350810289383,
87
+ "learning_rate": 0.00023999999999999998,
88
+ "loss": 0.2615,
89
+ "step": 80
90
+ },
91
+ {
92
+ "epoch": 6.53,
93
+ "eval_loss": 0.2476309835910797,
94
+ "eval_runtime": 90.525,
95
+ "eval_samples_per_second": 4.275,
96
+ "eval_steps_per_second": 0.541,
97
+ "step": 80
98
+ },
99
+ {
100
+ "epoch": 7.35,
101
+ "grad_norm": 0.17941106855869293,
102
+ "learning_rate": 0.00027,
103
+ "loss": 0.2216,
104
+ "step": 90
105
+ },
106
+ {
107
+ "epoch": 8.16,
108
+ "grad_norm": 0.20095375180244446,
109
+ "learning_rate": 0.0003,
110
+ "loss": 0.1832,
111
+ "step": 100
112
+ },
113
+ {
114
+ "epoch": 8.16,
115
+ "eval_loss": 0.2350914180278778,
116
+ "eval_runtime": 90.3919,
117
+ "eval_samples_per_second": 4.281,
118
+ "eval_steps_per_second": 0.542,
119
+ "step": 100
120
+ },
121
+ {
122
+ "epoch": 8.98,
123
+ "grad_norm": 0.2600422501564026,
124
+ "learning_rate": 0.00029,
125
+ "loss": 0.1441,
126
+ "step": 110
127
+ },
128
+ {
129
+ "epoch": 9.8,
130
+ "grad_norm": 0.20544037222862244,
131
+ "learning_rate": 0.00028,
132
+ "loss": 0.1186,
133
+ "step": 120
134
+ },
135
+ {
136
+ "epoch": 9.8,
137
+ "eval_loss": 0.23090216517448425,
138
+ "eval_runtime": 90.3144,
139
+ "eval_samples_per_second": 4.285,
140
+ "eval_steps_per_second": 0.543,
141
+ "step": 120
142
+ }
143
+ ],
144
+ "logging_steps": 10,
145
+ "max_steps": 400,
146
+ "num_input_tokens_seen": 0,
147
+ "num_train_epochs": 34,
148
+ "save_steps": 20,
149
+ "total_flos": 6.887969287129006e+17,
150
+ "train_batch_size": 32,
151
+ "trial_name": null,
152
+ "trial_params": null
153
+ }
checkpoint-120/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01be3c1366faeea704d7b18d02c117abdc170d0c96565a08a0f3ad9c5e7a123a
3
+ size 4856
checkpoint-140/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: bigcode/starcoder
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-140/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bigcode/starcoder",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "c_proj",
23
+ "c_attn",
24
+ "q_attn"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_rslora": false
28
+ }
checkpoint-140/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e44ce263e6fd885f50d82ca515b9325375b43ee36ededb75acf161ce88bc2e41
3
+ size 48
checkpoint-140/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:222684730d062ab6a2f08b62218a814e0c9939380313556b54cf827c12929f8b
3
+ size 284628602
checkpoint-140/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2ac710919be23109fc86c5fff99822b2cb7d7cfb09bc3a5a36f390af49cb96a
3
+ size 14244
checkpoint-140/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86d5f7e9b17251247c39fdd59964f3693734ddb120bd20dcb453e9efae1445bd
3
+ size 1064
checkpoint-140/trainer_state.json ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 11.428571428571429,
5
+ "eval_steps": 20,
6
+ "global_step": 140,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.82,
13
+ "grad_norm": 0.18377472460269928,
14
+ "learning_rate": 2.9999999999999997e-05,
15
+ "loss": 1.861,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 1.63,
20
+ "grad_norm": 0.35202744603157043,
21
+ "learning_rate": 5.9999999999999995e-05,
22
+ "loss": 1.7263,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 1.63,
27
+ "eval_loss": 1.4457755088806152,
28
+ "eval_runtime": 89.8938,
29
+ "eval_samples_per_second": 4.305,
30
+ "eval_steps_per_second": 0.545,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 2.45,
35
+ "grad_norm": 0.928983747959137,
36
+ "learning_rate": 8.999999999999999e-05,
37
+ "loss": 1.1718,
38
+ "step": 30
39
+ },
40
+ {
41
+ "epoch": 3.27,
42
+ "grad_norm": 0.253262996673584,
43
+ "learning_rate": 0.00011999999999999999,
44
+ "loss": 0.4789,
45
+ "step": 40
46
+ },
47
+ {
48
+ "epoch": 3.27,
49
+ "eval_loss": 0.3332095146179199,
50
+ "eval_runtime": 89.9804,
51
+ "eval_samples_per_second": 4.301,
52
+ "eval_steps_per_second": 0.545,
53
+ "step": 40
54
+ },
55
+ {
56
+ "epoch": 4.08,
57
+ "grad_norm": 0.12236642092466354,
58
+ "learning_rate": 0.00015,
59
+ "loss": 0.3568,
60
+ "step": 50
61
+ },
62
+ {
63
+ "epoch": 4.9,
64
+ "grad_norm": 0.09160923212766647,
65
+ "learning_rate": 0.00017999999999999998,
66
+ "loss": 0.3256,
67
+ "step": 60
68
+ },
69
+ {
70
+ "epoch": 4.9,
71
+ "eval_loss": 0.2753114104270935,
72
+ "eval_runtime": 90.3206,
73
+ "eval_samples_per_second": 4.285,
74
+ "eval_steps_per_second": 0.543,
75
+ "step": 60
76
+ },
77
+ {
78
+ "epoch": 5.71,
79
+ "grad_norm": 0.10242326557636261,
80
+ "learning_rate": 0.00020999999999999998,
81
+ "loss": 0.2841,
82
+ "step": 70
83
+ },
84
+ {
85
+ "epoch": 6.53,
86
+ "grad_norm": 0.1305350810289383,
87
+ "learning_rate": 0.00023999999999999998,
88
+ "loss": 0.2615,
89
+ "step": 80
90
+ },
91
+ {
92
+ "epoch": 6.53,
93
+ "eval_loss": 0.2476309835910797,
94
+ "eval_runtime": 90.525,
95
+ "eval_samples_per_second": 4.275,
96
+ "eval_steps_per_second": 0.541,
97
+ "step": 80
98
+ },
99
+ {
100
+ "epoch": 7.35,
101
+ "grad_norm": 0.17941106855869293,
102
+ "learning_rate": 0.00027,
103
+ "loss": 0.2216,
104
+ "step": 90
105
+ },
106
+ {
107
+ "epoch": 8.16,
108
+ "grad_norm": 0.20095375180244446,
109
+ "learning_rate": 0.0003,
110
+ "loss": 0.1832,
111
+ "step": 100
112
+ },
113
+ {
114
+ "epoch": 8.16,
115
+ "eval_loss": 0.2350914180278778,
116
+ "eval_runtime": 90.3919,
117
+ "eval_samples_per_second": 4.281,
118
+ "eval_steps_per_second": 0.542,
119
+ "step": 100
120
+ },
121
+ {
122
+ "epoch": 8.98,
123
+ "grad_norm": 0.2600422501564026,
124
+ "learning_rate": 0.00029,
125
+ "loss": 0.1441,
126
+ "step": 110
127
+ },
128
+ {
129
+ "epoch": 9.8,
130
+ "grad_norm": 0.20544037222862244,
131
+ "learning_rate": 0.00028,
132
+ "loss": 0.1186,
133
+ "step": 120
134
+ },
135
+ {
136
+ "epoch": 9.8,
137
+ "eval_loss": 0.23090216517448425,
138
+ "eval_runtime": 90.3144,
139
+ "eval_samples_per_second": 4.285,
140
+ "eval_steps_per_second": 0.543,
141
+ "step": 120
142
+ },
143
+ {
144
+ "epoch": 10.61,
145
+ "grad_norm": 0.2158157229423523,
146
+ "learning_rate": 0.00027,
147
+ "loss": 0.0947,
148
+ "step": 130
149
+ },
150
+ {
151
+ "epoch": 11.43,
152
+ "grad_norm": 0.18916285037994385,
153
+ "learning_rate": 0.00026,
154
+ "loss": 0.0768,
155
+ "step": 140
156
+ },
157
+ {
158
+ "epoch": 11.43,
159
+ "eval_loss": 0.24214179813861847,
160
+ "eval_runtime": 90.2597,
161
+ "eval_samples_per_second": 4.288,
162
+ "eval_steps_per_second": 0.543,
163
+ "step": 140
164
+ }
165
+ ],
166
+ "logging_steps": 10,
167
+ "max_steps": 400,
168
+ "num_input_tokens_seen": 0,
169
+ "num_train_epochs": 34,
170
+ "save_steps": 20,
171
+ "total_flos": 8.03366825638232e+17,
172
+ "train_batch_size": 32,
173
+ "trial_name": null,
174
+ "trial_params": null
175
+ }
checkpoint-140/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01be3c1366faeea704d7b18d02c117abdc170d0c96565a08a0f3ad9c5e7a123a
3
+ size 4856
checkpoint-160/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: bigcode/starcoder
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-160/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bigcode/starcoder",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "c_proj",
23
+ "c_attn",
24
+ "q_attn"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_rslora": false
28
+ }
checkpoint-160/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e44ce263e6fd885f50d82ca515b9325375b43ee36ededb75acf161ce88bc2e41
3
+ size 48
checkpoint-160/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2747c6579221cdf5bb28a934c1eb1fb4aff8ef6d09a8b0bd96f626ed051b467c
3
+ size 284628602
checkpoint-160/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2db044807e15fad135cbedea4b155f149313f24f1ea48d56839a21289a56f10
3
+ size 14244
checkpoint-160/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6bc91ca4e04e59b6aa0def614e5d23daa02dfd514357b40e48edfe0bf128e03
3
+ size 1064
checkpoint-160/trainer_state.json ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 13.061224489795919,
5
+ "eval_steps": 20,
6
+ "global_step": 160,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.82,
13
+ "grad_norm": 0.18377472460269928,
14
+ "learning_rate": 2.9999999999999997e-05,
15
+ "loss": 1.861,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 1.63,
20
+ "grad_norm": 0.35202744603157043,
21
+ "learning_rate": 5.9999999999999995e-05,
22
+ "loss": 1.7263,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 1.63,
27
+ "eval_loss": 1.4457755088806152,
28
+ "eval_runtime": 89.8938,
29
+ "eval_samples_per_second": 4.305,
30
+ "eval_steps_per_second": 0.545,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 2.45,
35
+ "grad_norm": 0.928983747959137,
36
+ "learning_rate": 8.999999999999999e-05,
37
+ "loss": 1.1718,
38
+ "step": 30
39
+ },
40
+ {
41
+ "epoch": 3.27,
42
+ "grad_norm": 0.253262996673584,
43
+ "learning_rate": 0.00011999999999999999,
44
+ "loss": 0.4789,
45
+ "step": 40
46
+ },
47
+ {
48
+ "epoch": 3.27,
49
+ "eval_loss": 0.3332095146179199,
50
+ "eval_runtime": 89.9804,
51
+ "eval_samples_per_second": 4.301,
52
+ "eval_steps_per_second": 0.545,
53
+ "step": 40
54
+ },
55
+ {
56
+ "epoch": 4.08,
57
+ "grad_norm": 0.12236642092466354,
58
+ "learning_rate": 0.00015,
59
+ "loss": 0.3568,
60
+ "step": 50
61
+ },
62
+ {
63
+ "epoch": 4.9,
64
+ "grad_norm": 0.09160923212766647,
65
+ "learning_rate": 0.00017999999999999998,
66
+ "loss": 0.3256,
67
+ "step": 60
68
+ },
69
+ {
70
+ "epoch": 4.9,
71
+ "eval_loss": 0.2753114104270935,
72
+ "eval_runtime": 90.3206,
73
+ "eval_samples_per_second": 4.285,
74
+ "eval_steps_per_second": 0.543,
75
+ "step": 60
76
+ },
77
+ {
78
+ "epoch": 5.71,
79
+ "grad_norm": 0.10242326557636261,
80
+ "learning_rate": 0.00020999999999999998,
81
+ "loss": 0.2841,
82
+ "step": 70
83
+ },
84
+ {
85
+ "epoch": 6.53,
86
+ "grad_norm": 0.1305350810289383,
87
+ "learning_rate": 0.00023999999999999998,
88
+ "loss": 0.2615,
89
+ "step": 80
90
+ },
91
+ {
92
+ "epoch": 6.53,
93
+ "eval_loss": 0.2476309835910797,
94
+ "eval_runtime": 90.525,
95
+ "eval_samples_per_second": 4.275,
96
+ "eval_steps_per_second": 0.541,
97
+ "step": 80
98
+ },
99
+ {
100
+ "epoch": 7.35,
101
+ "grad_norm": 0.17941106855869293,
102
+ "learning_rate": 0.00027,
103
+ "loss": 0.2216,
104
+ "step": 90
105
+ },
106
+ {
107
+ "epoch": 8.16,
108
+ "grad_norm": 0.20095375180244446,
109
+ "learning_rate": 0.0003,
110
+ "loss": 0.1832,
111
+ "step": 100
112
+ },
113
+ {
114
+ "epoch": 8.16,
115
+ "eval_loss": 0.2350914180278778,
116
+ "eval_runtime": 90.3919,
117
+ "eval_samples_per_second": 4.281,
118
+ "eval_steps_per_second": 0.542,
119
+ "step": 100
120
+ },
121
+ {
122
+ "epoch": 8.98,
123
+ "grad_norm": 0.2600422501564026,
124
+ "learning_rate": 0.00029,
125
+ "loss": 0.1441,
126
+ "step": 110
127
+ },
128
+ {
129
+ "epoch": 9.8,
130
+ "grad_norm": 0.20544037222862244,
131
+ "learning_rate": 0.00028,
132
+ "loss": 0.1186,
133
+ "step": 120
134
+ },
135
+ {
136
+ "epoch": 9.8,
137
+ "eval_loss": 0.23090216517448425,
138
+ "eval_runtime": 90.3144,
139
+ "eval_samples_per_second": 4.285,
140
+ "eval_steps_per_second": 0.543,
141
+ "step": 120
142
+ },
143
+ {
144
+ "epoch": 10.61,
145
+ "grad_norm": 0.2158157229423523,
146
+ "learning_rate": 0.00027,
147
+ "loss": 0.0947,
148
+ "step": 130
149
+ },
150
+ {
151
+ "epoch": 11.43,
152
+ "grad_norm": 0.18916285037994385,
153
+ "learning_rate": 0.00026,
154
+ "loss": 0.0768,
155
+ "step": 140
156
+ },
157
+ {
158
+ "epoch": 11.43,
159
+ "eval_loss": 0.24214179813861847,
160
+ "eval_runtime": 90.2597,
161
+ "eval_samples_per_second": 4.288,
162
+ "eval_steps_per_second": 0.543,
163
+ "step": 140
164
+ },
165
+ {
166
+ "epoch": 12.24,
167
+ "grad_norm": 0.22263498604297638,
168
+ "learning_rate": 0.00025,
169
+ "loss": 0.0615,
170
+ "step": 150
171
+ },
172
+ {
173
+ "epoch": 13.06,
174
+ "grad_norm": 0.21315976977348328,
175
+ "learning_rate": 0.00023999999999999998,
176
+ "loss": 0.054,
177
+ "step": 160
178
+ },
179
+ {
180
+ "epoch": 13.06,
181
+ "eval_loss": 0.25932466983795166,
182
+ "eval_runtime": 89.8439,
183
+ "eval_samples_per_second": 4.307,
184
+ "eval_steps_per_second": 0.545,
185
+ "step": 160
186
+ }
187
+ ],
188
+ "logging_steps": 10,
189
+ "max_steps": 400,
190
+ "num_input_tokens_seen": 0,
191
+ "num_train_epochs": 34,
192
+ "save_steps": 20,
193
+ "total_flos": 9.17609846966059e+17,
194
+ "train_batch_size": 32,
195
+ "trial_name": null,
196
+ "trial_params": null
197
+ }
checkpoint-160/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01be3c1366faeea704d7b18d02c117abdc170d0c96565a08a0f3ad9c5e7a123a
3
+ size 4856
checkpoint-180/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: bigcode/starcoder
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-180/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bigcode/starcoder",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "c_proj",
23
+ "c_attn",
24
+ "q_attn"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_rslora": false
28
+ }
checkpoint-180/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e44ce263e6fd885f50d82ca515b9325375b43ee36ededb75acf161ce88bc2e41
3
+ size 48
checkpoint-180/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac59b4a8215def070849b25780be46446aedd048d71d1cd8965d8b3e3c958f0a
3
+ size 284628602
checkpoint-180/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c643cd616fa0e3b8fc7b1ca162a78b68d156fe98612a09f80241bf8fd9147e5d
3
+ size 14244
checkpoint-180/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5dfc3bc75009efe48747cf9948a244ecefe4e6b758242f83bed075794e9a377
3
+ size 1064
checkpoint-180/trainer_state.json ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 14.693877551020408,
5
+ "eval_steps": 20,
6
+ "global_step": 180,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.82,
13
+ "grad_norm": 0.18377472460269928,
14
+ "learning_rate": 2.9999999999999997e-05,
15
+ "loss": 1.861,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 1.63,
20
+ "grad_norm": 0.35202744603157043,
21
+ "learning_rate": 5.9999999999999995e-05,
22
+ "loss": 1.7263,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 1.63,
27
+ "eval_loss": 1.4457755088806152,
28
+ "eval_runtime": 89.8938,
29
+ "eval_samples_per_second": 4.305,
30
+ "eval_steps_per_second": 0.545,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 2.45,
35
+ "grad_norm": 0.928983747959137,
36
+ "learning_rate": 8.999999999999999e-05,
37
+ "loss": 1.1718,
38
+ "step": 30
39
+ },
40
+ {
41
+ "epoch": 3.27,
42
+ "grad_norm": 0.253262996673584,
43
+ "learning_rate": 0.00011999999999999999,
44
+ "loss": 0.4789,
45
+ "step": 40
46
+ },
47
+ {
48
+ "epoch": 3.27,
49
+ "eval_loss": 0.3332095146179199,
50
+ "eval_runtime": 89.9804,
51
+ "eval_samples_per_second": 4.301,
52
+ "eval_steps_per_second": 0.545,
53
+ "step": 40
54
+ },
55
+ {
56
+ "epoch": 4.08,
57
+ "grad_norm": 0.12236642092466354,
58
+ "learning_rate": 0.00015,
59
+ "loss": 0.3568,
60
+ "step": 50
61
+ },
62
+ {
63
+ "epoch": 4.9,
64
+ "grad_norm": 0.09160923212766647,
65
+ "learning_rate": 0.00017999999999999998,
66
+ "loss": 0.3256,
67
+ "step": 60
68
+ },
69
+ {
70
+ "epoch": 4.9,
71
+ "eval_loss": 0.2753114104270935,
72
+ "eval_runtime": 90.3206,
73
+ "eval_samples_per_second": 4.285,
74
+ "eval_steps_per_second": 0.543,
75
+ "step": 60
76
+ },
77
+ {
78
+ "epoch": 5.71,
79
+ "grad_norm": 0.10242326557636261,
80
+ "learning_rate": 0.00020999999999999998,
81
+ "loss": 0.2841,
82
+ "step": 70
83
+ },
84
+ {
85
+ "epoch": 6.53,
86
+ "grad_norm": 0.1305350810289383,
87
+ "learning_rate": 0.00023999999999999998,
88
+ "loss": 0.2615,
89
+ "step": 80
90
+ },
91
+ {
92
+ "epoch": 6.53,
93
+ "eval_loss": 0.2476309835910797,
94
+ "eval_runtime": 90.525,
95
+ "eval_samples_per_second": 4.275,
96
+ "eval_steps_per_second": 0.541,
97
+ "step": 80
98
+ },
99
+ {
100
+ "epoch": 7.35,
101
+ "grad_norm": 0.17941106855869293,
102
+ "learning_rate": 0.00027,
103
+ "loss": 0.2216,
104
+ "step": 90
105
+ },
106
+ {
107
+ "epoch": 8.16,
108
+ "grad_norm": 0.20095375180244446,
109
+ "learning_rate": 0.0003,
110
+ "loss": 0.1832,
111
+ "step": 100
112
+ },
113
+ {
114
+ "epoch": 8.16,
115
+ "eval_loss": 0.2350914180278778,
116
+ "eval_runtime": 90.3919,
117
+ "eval_samples_per_second": 4.281,
118
+ "eval_steps_per_second": 0.542,
119
+ "step": 100
120
+ },
121
+ {
122
+ "epoch": 8.98,
123
+ "grad_norm": 0.2600422501564026,
124
+ "learning_rate": 0.00029,
125
+ "loss": 0.1441,
126
+ "step": 110
127
+ },
128
+ {
129
+ "epoch": 9.8,
130
+ "grad_norm": 0.20544037222862244,
131
+ "learning_rate": 0.00028,
132
+ "loss": 0.1186,
133
+ "step": 120
134
+ },
135
+ {
136
+ "epoch": 9.8,
137
+ "eval_loss": 0.23090216517448425,
138
+ "eval_runtime": 90.3144,
139
+ "eval_samples_per_second": 4.285,
140
+ "eval_steps_per_second": 0.543,
141
+ "step": 120
142
+ },
143
+ {
144
+ "epoch": 10.61,
145
+ "grad_norm": 0.2158157229423523,
146
+ "learning_rate": 0.00027,
147
+ "loss": 0.0947,
148
+ "step": 130
149
+ },
150
+ {
151
+ "epoch": 11.43,
152
+ "grad_norm": 0.18916285037994385,
153
+ "learning_rate": 0.00026,
154
+ "loss": 0.0768,
155
+ "step": 140
156
+ },
157
+ {
158
+ "epoch": 11.43,
159
+ "eval_loss": 0.24214179813861847,
160
+ "eval_runtime": 90.2597,
161
+ "eval_samples_per_second": 4.288,
162
+ "eval_steps_per_second": 0.543,
163
+ "step": 140
164
+ },
165
+ {
166
+ "epoch": 12.24,
167
+ "grad_norm": 0.22263498604297638,
168
+ "learning_rate": 0.00025,
169
+ "loss": 0.0615,
170
+ "step": 150
171
+ },
172
+ {
173
+ "epoch": 13.06,
174
+ "grad_norm": 0.21315976977348328,
175
+ "learning_rate": 0.00023999999999999998,
176
+ "loss": 0.054,
177
+ "step": 160
178
+ },
179
+ {
180
+ "epoch": 13.06,
181
+ "eval_loss": 0.25932466983795166,
182
+ "eval_runtime": 89.8439,
183
+ "eval_samples_per_second": 4.307,
184
+ "eval_steps_per_second": 0.545,
185
+ "step": 160
186
+ },
187
+ {
188
+ "epoch": 13.88,
189
+ "grad_norm": 0.18338361382484436,
190
+ "learning_rate": 0.00023,
191
+ "loss": 0.0455,
192
+ "step": 170
193
+ },
194
+ {
195
+ "epoch": 14.69,
196
+ "grad_norm": 0.17157459259033203,
197
+ "learning_rate": 0.00021999999999999995,
198
+ "loss": 0.0393,
199
+ "step": 180
200
+ },
201
+ {
202
+ "epoch": 14.69,
203
+ "eval_loss": 0.27233538031578064,
204
+ "eval_runtime": 90.1364,
205
+ "eval_samples_per_second": 4.293,
206
+ "eval_steps_per_second": 0.544,
207
+ "step": 180
208
+ }
209
+ ],
210
+ "logging_steps": 10,
211
+ "max_steps": 400,
212
+ "num_input_tokens_seen": 0,
213
+ "num_train_epochs": 34,
214
+ "save_steps": 20,
215
+ "total_flos": 1.0330202811421164e+18,
216
+ "train_batch_size": 32,
217
+ "trial_name": null,
218
+ "trial_params": null
219
+ }
checkpoint-180/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01be3c1366faeea704d7b18d02c117abdc170d0c96565a08a0f3ad9c5e7a123a
3
+ size 4856
checkpoint-20/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: bigcode/starcoder
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
checkpoint-20/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bigcode/starcoder",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "c_proj",
23
+ "c_attn",
24
+ "q_attn"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_rslora": false
28
+ }
checkpoint-20/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e44ce263e6fd885f50d82ca515b9325375b43ee36ededb75acf161ce88bc2e41
3
+ size 48
checkpoint-20/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df048142c25b752046df970d6dcc0693d5d7f4c4193730d6dbdeabe3af9861ad
3
+ size 284628602
checkpoint-20/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dbe6d770d526425c4ebf1c166cc93b0c0ddb2b941fd4176071da7fada6d3fe5
3
+ size 14244
checkpoint-20/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bc30782c80f39b95ece53e16ed533d0eb1d775796dc4d2c39691e355b142ab4
3
+ size 1064
checkpoint-20/trainer_state.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.6326530612244898,
5
+ "eval_steps": 20,
6
+ "global_step": 20,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.82,
13
+ "grad_norm": 0.18377472460269928,
14
+ "learning_rate": 2.9999999999999997e-05,
15
+ "loss": 1.861,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 1.63,
20
+ "grad_norm": 0.35202744603157043,
21
+ "learning_rate": 5.9999999999999995e-05,
22
+ "loss": 1.7263,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 1.63,
27
+ "eval_loss": 1.4457755088806152,
28
+ "eval_runtime": 89.8938,
29
+ "eval_samples_per_second": 4.305,
30
+ "eval_steps_per_second": 0.545,
31
+ "step": 20
32
+ }
33
+ ],
34
+ "logging_steps": 10,
35
+ "max_steps": 400,
36
+ "num_input_tokens_seen": 0,
37
+ "num_train_epochs": 34,
38
+ "save_steps": 20,
39
+ "total_flos": 1.1541043417605734e+17,
40
+ "train_batch_size": 32,
41
+ "trial_name": null,
42
+ "trial_params": null
43
+ }