a2c-PandaReachDense-v3 / config.json
salohiddin94's picture
Initial commit
658a2fa
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fcd38b083a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcd38afac40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 483340, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697350750978751409, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhLVUPXxjiz9doJo/wRicPxi4hT81Mya/EDRWPgsh9jyBzuE+Rd4Mv4lRoj6yVrA+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKggFP8EQvT9aZYY/yLvNP6nwpj/+Hju/H+SuvxkrvT8iw/I8F/iEv3++hbsbfWY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACEtVQ9fGOLP12gmj8SGec+TqF8P8mj0j/BGJw/GLiFPzUzJr/m5Xw9L25DP3AEz78QNFY+CyH2PIHO4T675t0+t6ONu+aetj5F3gy/iVGiPrJWsD6maWu/gLU8P8L4TT+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.05193092 1.0889735 1.2080189 ]\n [ 1.2195054 1.0446806 -0.64921886]\n [ 0.20918298 0.03004505 0.44102862]\n [-0.55026656 0.3170283 0.34441143]]", "desired_goal": "[[ 0.5196558 1.4770738 1.049968 ]\n [ 1.6072931 1.3042194 -0.73094165]\n [-1.3663367 1.4778777 0.02963406]\n [-1.0388211 -0.00408155 0.90034646]]", "observation": "[[ 0.05193092 1.0889735 1.2080189 0.45136315 0.9868363 1.6456233 ]\n [ 1.2195054 1.0446806 -0.64921886 0.06174269 0.7634 -1.6173229 ]\n [ 0.20918298 0.03004505 0.44102862 0.43340096 -0.00432249 0.35668105]\n [-0.55026656 0.3170283 0.34441143 -0.9195808 0.7371445 0.804577 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1UdPPfZScDxRnV0+xtXIO6hfBz6tSPs9AgJCPdEa4z3X1pY9GbuEvVPPi72brzM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05060561 0.01466822 0.21642043]\n [ 0.006129 0.13220084 0.12269721]\n [ 0.0473652 0.11089099 0.07365196]\n [-0.06480999 -0.06826653 0.17547457]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.51666, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8w6GQCCBf+MAWyUSwOMAXSUR0CVr5iDdxhldX2UKGgGR7/GaLGaQV9GaAdLA2gIR0CVsJSTyJ9BdX2UKGgGR7/YMcZLqUu+aAdLBmgIR0CVsC4HX2/SdX2UKGgGR7/MARTS9du6aAdLA2gIR0CVr7Sh8IAwdX2UKGgGR7/Zr1dxAB1caAdLBGgIR0CVsS2AG0NSdX2UKGgGR7/bjKxLTQVsaAdLBGgIR0CVsLghKUV0dX2UKGgGR7+8igTRIBikaAdLAmgIR0CVsD8IRh+fdX2UKGgGR7/I+W4Vh1DCaAdLA2gIR0CVr9ERradudX2UKGgGR7/JjUd7v5P/aAdLA2gIR0CVsUqABkqddX2UKGgGR7+gSnLq2SdOaAdLAWgIR0CVr9qp97WvdX2UKGgGR7/O4ACGN70GaAdLA2gIR0CVsNtBOYY0dX2UKGgGR7/al+Vkc0cfaAdLBGgIR0CVsGvHcUM5dX2UKGgGR7/QFBppN9H+aAdLA2gIR0CVr/q5LAYYdX2UKGgGR7/So+wC8vmHaAdLBGgIR0CVsXPtlZoxdX2UKGgGR7/N4DcM3IdVaAdLA2gIR0CVsPaJhvzfdX2UKGgGR7/SPIn0Cih4aAdLA2gIR0CVsIYRujyndX2UKGgGR7/Rw6QvHtF8aAdLA2gIR0CVsBmjCYTkdX2UKGgGR7/LzYEnssxxaAdLA2gIR0CVsRVpKzzFdX2UKGgGR7/Z+De0ojOcaAdLBGgIR0CVsZsyi22HdX2UKGgGR7+IyXUpd8iOaAdLAWgIR0CVsR3YL9dedX2UKGgGR7/JCNS619fDaAdLA2gIR0CVsKTGo73gdX2UKGgGR7/EF0xM36yjaAdLAmgIR0CVsLW/ag27dX2UKGgGR7/YfNRm9QGfaAdLBGgIR0CVsDyfthNNdX2UKGgGR7/W8vVVghKUaAdLBGgIR0CVsc4YrJ8wdX2UKGgGR7/Xf7aZhKDkaAdLBGgIR0CVsVBvaURndX2UKGgGR7/D14gRsdkraAdLAmgIR0CVsF3FDOTrdX2UKGgGR7/NC0ngHeJpaAdLA2gIR0CVsN+XZ5AydX2UKGgGR7/B/ffoA4n4aAdLAmgIR0CVsWEVWS2ZdX2UKGgGR7+9SLqD9OynaAdLAmgIR0CVsG5C4SYgdX2UKGgGR7/QLwWnCO3laAdLBGgIR0CVsfT7EYO2dX2UKGgGR7/RAKfFrEcbaAdLA2gIR0CVsX974SHudX2UKGgGR7/U5Jbt7a7FaAdLBGgIR0CVsQYvnKW+dX2UKGgGR7/P3qRlpXZHaAdLBGgIR0CVsJVLBbfQdX2UKGgGR7/LcgQpWmxdaAdLA2gIR0CVsg5Z8rqddX2UKGgGR7+wzLwF1SwXaAdLAmgIR0CVsZD28IzFdX2UKGgGR7/TtZmqYJE6aAdLA2gIR0CVsR9V3ljmdX2UKGgGR7/M+FDfFaStaAdLA2gIR0CVsLPY4ACGdX2UKGgGR7/TF0PpY9xIaAdLBGgIR0CVsjSMLncMdX2UKGgGR7/bGS6lLvkSaAdLBGgIR0CVsbew9q1xdX2UKGgGR7/WSP2f029+aAdLA2gIR0CVsT6Oo5xSdX2UKGgGR7/A6fapPykLaAdLAmgIR0CVscjpLVWkdX2UKGgGR7/bxmkFfReDaAdLBGgIR0CVsNYao/A1dX2UKGgGR7/M2l2vB7/oaAdLA2gIR0CVslQJHAh0dX2UKGgGR7/Si6xxDLKWaAdLA2gIR0CVsV1QIldDdX2UKGgGR7/Cslsxfv4NaAdLAmgIR0CVsOy44Ia+dX2UKGgGR7+8RL9MsYl6aAdLAmgIR0CVsmW3Sa3JdX2UKGgGR7/F6E8JUo8ZaAdLA2gIR0CVsegtvn8sdX2UKGgGR7+4WvbGm1pkaAdLAmgIR0CVsndat9x7dX2UKGgGR7/YE0zj3mFKaAdLBGgIR0CVsYJmdy1edX2UKGgGR7/No371qWTpaAdLA2gIR0CVsQphF3INdX2UKGgGR7/JtNSIgvDhaAdLA2gIR0CVsgwAEMb4dX2UKGgGR7/B2A5Jbt7baAdLAmgIR0CVsZsCDEm6dX2UKGgGR7/JGb1AZ88caAdLA2gIR0CVspsByS3cdX2UKGgGR7/KQarFOwgUaAdLA2gIR0CVsSsPrfLtdX2UKGgGR7+o+Sr5qM3qaAdLAWgIR0CVsqSIxgy/dX2UKGgGR7/Ykxyn1nM/aAdLBGgIR0CVsi8KohpydX2UKGgGR7/TAhB7eEZjaAdLA2gIR0CVsbXwLE1mdX2UKGgGR7/Rn3+MqBmPaAdLA2gIR0CVsUoH9m6HdX2UKGgGR7/IDwpe/pMYaAdLA2gIR0CVssNDMNc4dX2UKGgGR7+8mBvrGBFvaAdLAmgIR0CVskXJo0yhdX2UKGgGR7/M7DEWIoE0aAdLA2gIR0CVsdW69TP0dX2UKGgGR7+ve3x4IKMOaAdLAmgIR0CVsV0eU6gedX2UKGgGR7+/Fl05lvqDaAdLAmgIR0CVstZLqUu+dX2UKGgGR7/M3qiXY150aAdLA2gIR0CVsmEGJN0vdX2UKGgGR7+wt4A0bcXWaAdLAmgIR0CVseffXPJJdX2UKGgGR7/LUyYXwb2laAdLA2gIR0CVsXxQSBbwdX2UKGgGR7+79LpRoAXEaAdLAmgIR0CVsniGWUr1dX2UKGgGR7/cROUMXrMUaAdLBGgIR0CVsv9AHE/CdX2UKGgGR7/WIWP91loUaAdLBGgIR0CVshAzpHI7dX2UKGgGR7/EPH1e0G/vaAdLA2gIR0CVsZdKujh2dX2UKGgGR7/KWdEsrd30aAdLA2gIR0CVspLIgeRxdX2UKGgGR7+St/4IrvsraAdLAWgIR0CVsp+XqqwRdX2UKGgGR7/AxTKkl/pdaAdLAmgIR0CVsiZYgaFVdX2UKGgGR7/V/R3NcGC7aAdLBGgIR0CVsyWOIZZTdX2UKGgGR7/A0bcXWOIZaAdLAmgIR0CVsjVN5+pgdX2UKGgGR7/VVFx4ptrLaAdLBGgIR0CVsbvddmg8dX2UKGgGR7+2gTRIBikPaAdLAmgIR0CVszSG8EmqdX2UKGgGR7/Y4zabnX/YaAdLBGgIR0CVsr5NoJzDdX2UKGgGR7/Dn0TURWcSaAdLAmgIR0CVscuieumrdX2UKGgGR7/PbrTpgTh6aAdLA2gIR0CVslIKMNtqdX2UKGgGR7/HYdyT6i0waAdLA2gIR0CVs1FCb+cZdX2UKGgGR7+v+uNgjQiSaAdLAmgIR0CVseEtdzGQdX2UKGgGR7/VR5C4SYgJaAdLBGgIR0CVsuZydWhidX2UKGgGR7/SMsYl6Z6VaAdLA2gIR0CVsm1g6U7kdX2UKGgGR7/Tm5Dqnm7raAdLA2gIR0CVs21WsA/+dX2UKGgGR7/MQjlgc94eaAdLA2gIR0CVsf0Z3s5XdX2UKGgGR7/B4ZdfLLZBaAdLAmgIR0CVsv01qFh5dX2UKGgGR7+8FRpDeCTVaAdLAmgIR0CVs4NnGsFMdX2UKGgGR7+wla8pTdcjaAdLAmgIR0CVshNR3u/ldX2UKGgGR7/YLORkmQbNaAdLBGgIR0CVspX8fmtAdX2UKGgGR7+zSNOuaF23aAdLAmgIR0CVs5WmP5pKdX2UKGgGR7/QWDHwPRReaAdLA2gIR0CVsxgxJul5dX2UKGgGR7+1PFefI0ZWaAdLAmgIR0CVsiV5rxiHdX2UKGgGR7/FEE1VHWjHaAdLAmgIR0CVsy1hLGrCdX2UKGgGR7/R9WIXTEzgaAdLA2gIR0CVsrRU3n6mdX2UKGgGR7+/uUliSaE0aAdLAmgIR0CVsjstCiRGdX2UKGgGR7/SWZJCjUNKaAdLBGgIR0CVs7w5/9YPdX2UKGgGR7/AeEIw/PgOaAdLAmgIR0CVsz7NSqEOdX2UKGgGR7/Jt5UtI066aAdLA2gIR0CVslSHdoFndX2UKGgGR7/Wu01IiC8OaAdLBGgIR0CVstZPVNHpdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 24167, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}