samadpls commited on
Commit
cf945b2
·
verified ·
1 Parent(s): aae177e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -166
README.md CHANGED
@@ -1,199 +1,87 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
69
 
70
- ## How to Get Started with the Model
 
71
 
72
- Use the code below to get started with the model.
 
 
 
73
 
74
- [More Information Needed]
 
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
 
 
 
 
 
 
 
 
 
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
 
 
194
 
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ datasets:
5
+ - jhu-clsp/jfleg
6
+ language:
7
+ - en
8
+ base_model:
9
+ - google-t5/t5-base
10
+ pipeline_tag: text2text-generation
11
  ---
12
 
13
+ # 📚 Model Card for Grammar Correction Model
 
 
 
14
 
15
+ This is a grammar correction model based on the Google T5 architecture, fine-tuned on the JHU CLSP JFLEG dataset for text correction tasks. ✍️
16
 
17
  ## Model Details
18
 
19
+ This model is designed to correct grammatical errors in English sentences. It was fine-tuned using the JFLEG dataset, which provides examples of grammatically correct sentences.
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ - **Developed by:** Abdul Samad Siddiqui ([@samadpls](https://github.com/samadpls)) 👨‍💻
 
 
 
 
 
 
22
 
23
  ## Uses
24
 
25
+ This model can be directly used to correct grammar and spelling mistakes in sentences.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
+ ### Example Usage
28
 
29
+ Here's a basic code snippet to demonstrate how to use the model:
30
 
31
+ ```python
32
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
33
 
34
+ # Load the model and tokenizer
35
+ model_name = "samadpls/t5-base-grammar-checker"
36
+ tokenizer = T5Tokenizer.from_pretrained(model_name)
37
+ model = T5ForConditionalGeneration.from_pretrained(model_name)
38
 
39
+ # Example input
40
+ example_1 = "grammar: This sentences, has bads grammar and spelling!"
41
 
42
+ # Tokenize and generate corrected output
43
+ inputs = tokenizer.encode(example_1, return_tensors="pt")
44
+ outputs = model.generate(inputs)
45
+ corrected_sentence = tokenizer.decode(outputs[0], skip_special_tokens=True)
46
 
47
+ print("Corrected Sentence:", corrected_sentence)
48
+ ```
49
 
50
  ## Training Details
51
 
52
+ The model was trained on the JHU CLSP JFLEG dataset, which includes various examples of sentences with grammatical errors and their corrections. 📖
 
 
 
 
53
 
54
  ### Training Procedure
55
 
56
+ - **Training Hardware:** Personal laptop with NVIDIA GeForce MX230 GDDR5 and 16GB RAM 💻
57
+ - **Training Time:** Approximately 1 hour ⏳
58
+ - **Hyperparameters:** No specific hyperparameters were set for training.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
+ ### Training Logs
61
 
62
+ | Step | Training Loss | Validation Loss |
63
+ |------|---------------|-----------------|
64
+ | 1 | 0.9282 | 0.6091 |
65
+ | 2 | 0.6182 | 0.5561 |
66
+ | 3 | 0.6279 | 0.5345 |
67
+ | 4 | 0.6345 | 0.5147 |
68
+ | 5 | 0.5636 | 0.5076 |
69
+ | 6 | 0.6009 | 0.4928 |
70
+ | 7 | 0.5469 | 0.4950 |
71
+ | 8 | 0.5797 | 0.4834 |
72
+ | 9 | 0.5619 | 0.4818 |
73
+ | 10 | 0.6342 | 0.4788 |
74
+ | 11 | 0.5481 | 0.4786 |
75
 
76
+ ### Final Training Metrics
77
 
78
+ - **Training Runtime:** 1508.2528 seconds ⏱️
79
+ - **Training Samples per Second:** 1.799
80
+ - **Training Steps per Second:** 0.225
81
+ - **Final Training Loss:** 0.5925
82
+ - **Final Epoch:** 1.0
83
 
 
84
 
85
  ## Model Card Contact
86
 
87
+ For inquiries, please contact Abdul Samad Siddiqui via GitHub. 📬