A commit with ppo-lunarLander-v2 model
Browse files- .gitattributes +1 -0
- README.md +1 -1
- config.json +1 -1
- ppo-lunarLander-v2.zip +2 -2
- ppo-lunarLander-v2/data +16 -16
- ppo-lunarLander-v2/policy.optimizer.pth +1 -1
- ppo-lunarLander-v2/policy.pth +1 -1
- ppo-lunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 247.92 +/- 17.43
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x789abe455ea0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x789abe455f30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x789abe455fc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x789abe456050>", "_build": "<function ActorCriticPolicy._build at 0x789abe4560e0>", "forward": "<function ActorCriticPolicy.forward at 0x789abe456170>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x789abe456200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x789abe456290>", "_predict": "<function ActorCriticPolicy._predict at 0x789abe456320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x789abe4563b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x789abe456440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x789abe4564d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x789abeed0bc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736012164456850878, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpc4T0beuU+RbIFvrpms75Vi7E82tuGvAAAAAAAAAAAzQfSPeh7/D3Lo0a+HJ1gvqiXsL3Zc8C9AAAAAAAAAAANlVm+lKzavI6i7jqTSXE54i8+Pm9SHLoAAIA/AACAPwC/lr3h5Iq6wDY1OalCLzSqCiC6nclSuAAAgD8AAIA/M8P9OwenYT9RIQQ80U/TvjMbpLvNAwg8AAAAAAAAAADAqKk9+CnYPVApLL5u7V2+tmkmvWLlrTwAAAAAAAAAAIATvj0NxGQ/29CBu41Jx76LuS4+Fcq6vAAAAAAAAAAAzc59vRYQVD22cl4+mXxBvgrsvjzx0KK8AAAAAAAAAACzkDy+Icx1P06k6b0tqNm+ojcWvs4fY7wAAAAAAAAAAI0q8b2Pfi66iVYgM1OjgC/KMi26G0DVswAAgD8AAIA/Jhk+vqZnKj8I1ru9X7CTvop4G74d+689AAAAAAAAAABAU4O9sqGqPw6BkL6fhsS+TuoPvbA48r0AAAAAAAAAAJrJq7v+Nbc/U8IHvjyTPz6++8M7/UrzPAAAAAAAAAAAjXiOvf8e2D7kkAa8S3OxvrOiXL0iyb08AAAAAAAAAAAAe/G8sXzqPUjpET5JDjS+v6I6O8vM4TwAAAAAAAAAAIMYmj7/ME0/6D3OPRI3yr7INLk+8MYwvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+gQqqfe1uMAWyUTQMBjAF0lEdAj9vnUMG5c3V9lChoBkdAb/5JcxCY1GgHTQgBaAhHQI/cg/7iyY51fZQoaAZHQG7YheXzDoBoB00OAWgIR0CP3YNfgJkYdX2UKGgGR0BxH1B4Uvf1aAdNDAFoCEdAj96etCAtnXV9lChoBkdAcmo3bVSXMWgHTUABaAhHQI/e/L5hz/91fZQoaAZHQHJxPsAvL5hoB00mAWgIR0CP360qH447dX2UKGgGR0ByCdxkupS8aAdL/mgIR0CP4zuBMBZIdX2UKGgGR0BxrTXwsoUjaAdNOwFoCEdAj+T68pTdcnV9lChoBkdAcAP1NQCSzWgHTRgBaAhHQI/mmgQHzH11fZQoaAZHQG/ejJuEVWVoB02XAWgIR0CP52wHqu8sdX2UKGgGR0BzHjw4KhL5aAdNKwFoCEdAj+hyVW0Z33V9lChoBkdAbotpFkQPJGgHTSMBaAhHQI/rOpqASWZ1fZQoaAZHQG2hZoXbdrRoB0vyaAhHQI/s7wYtQKt1fZQoaAZHQHGzFclgMMJoB0vtaAhHQI/uO3trsSl1fZQoaAZHQHAtXWnTAnFoB0v4aAhHQI/vg6S1Vo91fZQoaAZHQHBTVYuCf6JoB0v9aAhHQI/w/yTY/V11fZQoaAZHQHFYz9S/CZZoB00hAWgIR0CP8UOPvKEGdX2UKGgGR0BvA4kC3gDSaAdNNAFoCEdAj/MZtNzr/3V9lChoBkdAcTUq59Vmz2gHTRsBaAhHQI/zGweNkvt1fZQoaAZHQEveJMQEpy9oB0vSaAhHQI/0fVRUFSt1fZQoaAZHQHDb2pIczZZoB00HAWgIR0CP9IvrWy1NdX2UKGgGR0Bag9L127nQaAdN6ANoCEdAj/liFbmlqXV9lChoBkdAcPrP5pJwsGgHTSgBaAhHQI/6wtSQ5m11fZQoaAZHQHDMDsD4gzRoB00HAWgIR0CP/XSF49owdX2UKGgGR0BxPAzuWrwOaAdNcwFoCEdAj/3QL/jsEHV9lChoBkdAcAAgDA8B/GgHTU4BaAhHQI//BCD28I11fZQoaAZHQHGSka2nbZhoB00LAWgIR0CP/2s90RvndX2UKGgGR0BzWEE/0NBoaAdNBQFoCEdAkAAqgIyCWnV9lChoBkdAbwOn2IwdsGgHS+poCEdAkADLfUF0P3V9lChoBkdAcouaA4GUwGgHTRoBaAhHQJABf8IiTt91fZQoaAZHQHIIWsijcmBoB00MAWgIR0CQAcmlImPYdX2UKGgGR0BuKvIbOu7paAdNBAFoCEdAkAMq19fCynV9lChoBkdAcQv1Oj7AL2gHTRkBaAhHQJADMp9ZzPt1fZQoaAZHQG8+iIk7fYVoB00iAWgIR0CQBAIcR15jdX2UKGgGR0BzCoc94eLfaAdNhwFoCEdAkAbLBbfP5nV9lChoBkdActg5Rjz7M2gHTRUBaAhHQJAG73Fkxyp1fZQoaAZHQG9XFIVdonNoB00BAWgIR0CQB3vduYQbdX2UKGgGR0BxG0M9bHIZaAdL9mgIR0CQB7n+yZ8bdX2UKGgGR0BzYIzabnX/aAdNKwFoCEdAkAiyeEqUeXV9lChoBkdAcayHXEqDsmgHTSsBaAhHQJAKVg8bJfZ1fZQoaAZHQG53dxZMcp9oB0vwaAhHQJALt9Brvb51fZQoaAZHQHJtfgzguRNoB001AWgIR0CQC84GUwBYdX2UKGgGR0BhSp+nZTQ3aAdN6ANoCEdAkAwOKCQLeHV9lChoBkdAb+0U8mrsB2gHTT4BaAhHQJANWOZLIxR1fZQoaAZHQHAuorz5GjNoB00eAWgIR0CQDd6F/QSjdX2UKGgGR0BwxjktEofCaAdNGAFoCEdAkA6mn0kGA3V9lChoBkdAcQo2X9itrGgHTWUBaAhHQJAPFNTLns91fZQoaAZHQHAMZpWV/tpoB0v5aAhHQJARaq94/u91fZQoaAZHQGximEoOQQtoB00HAWgIR0CQEaN0vGp/dX2UKGgGR0BSCV/x2B8QaAdN6ANoCEdAkB9/cvduYXV9lChoBkdAcdq7F85S32gHTQsBaAhHQJAfj9ZRsM11fZQoaAZHQHJN7zwtrbhoB01sAWgIR0CQIOLsa86FdX2UKGgGR0Bwf0YrJ8v3aAdNBQFoCEdAkCI96HCXQnV9lChoBkdAcyULehwl0GgHS+hoCEdAkCNyLl3hXXV9lChoBkdAcjXoUBXCCWgHTVIBaAhHQJAk/ASFoL51fZQoaAZHQHExr5RCQcRoB005AWgIR0CQJTYs/Y8MdX2UKGgGR0Bxy8My8BdVaAdNdgFoCEdAkCVAvYe1bHV9lChoBkdAcCUs8PnSv2gHTWYBaAhHQJAlp7MPjGV1fZQoaAZHQHEQ2Lgn+hpoB00XAWgIR0CQJbMINVindX2UKGgGR0BwoFe5WilBaAdNAgJoCEdAkCaskyDZlHV9lChoBkdAcB1lenhsImgHTQIBaAhHQJAnfwBo24x1fZQoaAZHQHKijMmnfl9oB00WAWgIR0CQKMai9IwudX2UKGgGR0BwQucc2itaaAdL+WgIR0CQKSNayKNydX2UKGgGR0Bw1qy0KJEZaAdNlQFoCEdAkCltZRsMzHV9lChoBkdAck5zch1TzmgHTQIBaAhHQJAphMJx//h1fZQoaAZHQHAGAeii7CloB00cAWgIR0CQLi7zTWoWdX2UKGgGR0Bv8V65Xlr/aAdNSAFoCEdAkC6jZxrBTHV9lChoBkdAVjL4zrNW2mgHTegDaAhHQJAvYDcM3Id1fZQoaAZHQHHqE8/2TPloB0v3aAhHQJAwy8dxQzl1fZQoaAZHQHL99dqtYCBoB00KAWgIR0CQMRE5yU9qdX2UKGgGR0Bt5ZeVs1sMaAdNCgFoCEdAkDGG16Vt43V9lChoBkdAY79yGSIP9WgHTegDaAhHQJAyyTgVGkN1fZQoaAZHQG17+sYEW69oB01rAWgIR0CQMu/YraufdX2UKGgGR0BxDkn7YTTOaAdL9mgIR0CQM26eXiR5dX2UKGgGR0BwgjTodMkAaAdNEAFoCEdAkDNsMEzO5nV9lChoBkdAcLwvDgqEvmgHTSoBaAhHQJAzrapPykN1fZQoaAZHQHC01pwjt5VoB00NAWgIR0CQNGp8neBQdX2UKGgGR0ByB5u4wyqNaAdNIwFoCEdAkDVoAn2IwnV9lChoBkdAbxA2itaIN2gHTbQBaAhHQJA2q8brC3x1fZQoaAZHQHDRBGpda+xoB01WAWgIR0CQNvB4D9wWdX2UKGgGR0By5MuVX3g2aAdNFQFoCEdAkDgoJJGvwHV9lChoBkdAcDKYHPeHi2gHTSABaAhHQJA4z/Pw/gR1fZQoaAZHQG+fVGCqZMNoB00XAWgIR0CQOPlo11nvdX2UKGgGR0BxZSOT7l7uaAdNAwFoCEdAkDn4fSx7iXV9lChoBkdAcq3UeMhoumgHTRUBaAhHQJA6RSvTw2F1fZQoaAZHQHB/J57gKnhoB00YAWgIR0CQO/JxNqQBdX2UKGgGR0BxFU2WIGhVaAdNTgFoCEdAkDv9Whh6SnV9lChoBkdAcz8KFZgXuWgHTUMBaAhHQJA9oMoc7yR1fZQoaAZHQHEFbQgLZzxoB001AWgIR0CQPabpu/DcdX2UKGgGR0BxZjJQtSQ6aAdNHwFoCEdAkD4EC3gDR3V9lChoBkdAb9IPGQ0XQGgHTUEBaAhHQJA+DZK3/gl1fZQoaAZHQHMpv8Q7LdNoB00gAWgIR0CQPvdbPhQ4dX2UKGgGR0BwrIllbu+iaAdNeQFoCEdAkD/riuMdcXV9lChoBkdAcZBdl/Yra2gHTTYBaAhHQJBBD0mMOwx1fZQoaAZHQHDFRt1p0wJoB01HAWgIR0CQQVAlfJFLdX2UKGgGR0ByJ/maH9FXaAdNBAFoCEdAkEF1C1JDmnV9lChoBkdAcDvxhDw6Q2gHTR4BaAhHQJBBgW+GoJl1fZQoaAZHQHKlhS1maphoB0vvaAhHQJBB5wHZ9NN1fZQoaAZHQHIYiydFvydoB002AWgIR0CQQt/d69kCdX2UKGgGR0Bw7kc94eLfaAdNJgFoCEdAkEOoR28qWnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVIwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeC9ob21lL3JsL1B5Y2hhcm1Qcm9qZWN0cy9PcHRpbWl6ZWRMdW5hckxhbmRlci12Mi1QUE8vdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMeC9ob21lL3JsL1B5Y2hhcm1Qcm9qZWN0cy9PcHRpbWl6ZWRMdW5hckxhbmRlci12Mi1QUE8vdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVIwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeC9ob21lL3JsL1B5Y2hhcm1Qcm9qZWN0cy9PcHRpbWl6ZWRMdW5hckxhbmRlci12Mi1QUE8vdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMeC9ob21lL3JsL1B5Y2hhcm1Qcm9qZWN0cy9PcHRpbWl6ZWRMdW5hckxhbmRlci12Mi1QUE8vdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.8.0-49-generic-x86_64-with-glibc2.35 # 49~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Nov 6 17:42:15 UTC 2", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "False", "Numpy": "1.26.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c71e4c55ea0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c71e4c55f30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c71e4c55fc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c71e4c56050>", "_build": "<function ActorCriticPolicy._build at 0x7c71e4c560e0>", "forward": "<function ActorCriticPolicy.forward at 0x7c71e4c56170>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c71e4c56200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c71e4c56290>", "_predict": "<function ActorCriticPolicy._predict at 0x7c71e4c56320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c71e4c563b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c71e4c56440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c71e4c564d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c71e4c45480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1738457598664172604, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo5fj3W3JY/GDYlPQbjl74AWxY9PU5OPQAAAAAAAAAAzb68PSkIb7qIeom5bUvxuIe1zblQS7s4AACAPwAAAABNXi49FOycuijz2jmC6o+01c2KOrKJ/LgAAIA/AACAP4bZMr7Pc8I+fo9zPl9Unb6FJIo9Xt7jPAAAAAAAAAAAjVuCvYRPQT4jiKu8vtZlvsr6lL3O/oi9AAAAAAAAAAAzn6A81m23Py9vKz6nQTK93yO9u/7zDz0AAAAAAAAAAKrMhj6ttzi9irx9PLTTELuJ+qG+GAzSuwAAgD8AAIA/zbXiPE5yrbyRPC089klOPcd71D0/3Ai8AACAPwAAgD8znWa8RKGoP4Orzb1Un5W+gQ6OvVIzZL0AAAAAAAAAAOYmgT2x7VM+umhHPXs0Gb4ePGg90sY6PQAAAAAAAAAA6kOMPhTKc73F0iQ9cOvqu+GYzr7et6S8AACAPwAAgD/NpHQ+IJlNP111Ar2n0JK+mpyOPHeNO70AAAAAAAAAAIBaZz3ZMxM/uv9LvcESWb4+EaG7UNZDvQAAAAAAAAAAM0AOvm+lrT8sowq/hbmSvhmOdr779oW+AAAAAAAAAABNf7m9XzI2PibVOD4rPjW+438UPK7ErDwAAAAAAAAAALP2Bj7Xsyi7NdiNvRt2Ub04SUM9i60wPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6Ml/hESdyMAWyUTUgBjAF0lEdAkU81GCqZMXV9lChoBkdAclNqQiiZfGgHTYYBaAhHQJFPWJ/G2kV1fZQoaAZHQG49uQp4KQdoB01eAWgIR0CRUO3u/k/9dX2UKGgGR0BsG8YsNDtxaAdNgAFoCEdAkVF91IRRM3V9lChoBkdAcK1Gs3hn8WgHTYcBaAhHQJFSAvEjxCp1fZQoaAZHQG/pj7ALy+ZoB01LAWgIR0CRU25CngpCdX2UKGgGR0Btrso+fRNRaAdNMwFoCEdAkVRO2Zy+6HV9lChoBkdAb8D/YraufWgHTVMBaAhHQJFV637UG3Z1fZQoaAZHQG3eUPpY9xJoB01dAWgIR0CRVirRjSXudX2UKGgGR0ByGZr433pOaAdNSwFoCEdAkVZCQLeANHV9lChoBkdAba667ulXR2gHTXcBaAhHQJFWbyLAHml1fZQoaAZHQHCicgyM1j1oB01eAWgIR0CRVs2dd3SsdX2UKGgGR0BOpfh/Aj6faAdNEQFoCEdAkVbloUSIxnV9lChoBkdATC7BO58Sf2gHS+poCEdAkVltfb9IgHV9lChoBkdAcnuJUYKpk2gHTU4BaAhHQJFl7QPZqVR1fZQoaAZHQGtynPu5SWJoB01UAWgIR0CRZkxmTTvzdX2UKGgGR0Bux3l2eQMhaAdNTAFoCEdAkWccvIwM6XV9lChoBkdAcAktdRiw0WgHTXgBaAhHQJFpC6f8Mux1fZQoaAZHQG4pm5c1O0toB01wAWgIR0CRbBZkCmuUdX2UKGgGR0Bx/pKwpvxZaAdNmwFoCEdAkWxEzoEB83V9lChoBkdAcrIIIF/x2GgHTUYBaAhHQJFtWqIacZt1fZQoaAZHQG+0ktVaOghoB009AWgIR0CRbWNt65XmdX2UKGgGR0BvCbehwl0HaAdNQwFoCEdAkW1/VurIYHV9lChoBkdAbsNgJC0F82gHTXQBaAhHQJFtdpHqeK91fZQoaAZHQG2dJ4KQaJhoB00/AWgIR0CRbZdcjZ+QdX2UKGgGR0Bczbwz+FURaAdN6ANoCEdAkW6vcrRSg3V9lChoBkdAbT8/cnE2pGgHTVEBaAhHQJFuvnIQvpR1fZQoaAZHQHG7QB91EE1oB03tAWgIR0CRb7ar3j+8dX2UKGgGR0Bvf+9OARTTaAdNfwFoCEdAkXAy6cy31HV9lChoBkdAaw4dGy5ZsGgHTUwBaAhHQJFxNPP9kz51fZQoaAZHQHBM4TCcf/5oB005AWgIR0CRciII4VASdX2UKGgGR0BvOnYxtYSyaAdNUAFoCEdAkXKU2cawU3V9lChoBkdAcaOhuO0b+GgHTVgBaAhHQJFzpoIv8Il1fZQoaAZHQEluSGJvYOFoB00QAWgIR0CRdmAaNuLrdX2UKGgGR0ByfA8aGYa6aAdNTgFoCEdAkXfHdXT3I3V9lChoBkdAayJScbzbvmgHTT4BaAhHQJF4Tj7yhBZ1fZQoaAZHQGvBpT2nKnxoB01ZAWgIR0CReVHDaXa8dX2UKGgGR0BxMZiExqO+aAdNSAFoCEdAkXoNkrf+CXV9lChoBkdAbVGt5D7ZWmgHTYkBaAhHQJF6VVghKUV1fZQoaAZHQG5vDEehf0FoB018AWgIR0CRer+fh/AkdX2UKGgGR0BtgA3WFvhqaAdNjAFoCEdAkXteWWyC4HV9lChoBkdAbZ3SCOFQEmgHTYQBaAhHQJF8JQVKwpx1fZQoaAZHQG8cab4Ju2toB01sAWgIR0CRfIRzRx95dX2UKGgGR0BuiDdpItlJaAdNVQFoCEdAkX1ea8YhuHV9lChoBkdAcQFYlY2bX2gHTX4BaAhHQJF9hW3jMmp1fZQoaAZHQHCKI+Sr5qNoB008AWgIR0CRfgHVPN3XdX2UKGgGR0Br/yH6/IsAaAdNkQFoCEdAkYIWE9Mbm3V9lChoBkdAcHfxWT5ft2gHTWYBaAhHQJGDZvze41B1fZQoaAZHQGzxqt5le4VoB01fAWgIR0CRhFe7tiQUdX2UKGgGR0BsHTyhBZ6laAdNQwFoCEdAkYXEaESM+HV9lChoBkdAbRnZoPCl8GgHTXsBaAhHQJGGFI6Kcd51fZQoaAZHQHC2lYlpoK5oB01vAWgIR0CRiFoiLVFydX2UKGgGR0BxQhO6/ZdwaAdNnwFoCEdAkYnSiudPL3V9lChoBkdAbusk3S8aoGgHTUIBaAhHQJGKTN1QqI91fZQoaAZHQHBpJ1zQu29oB01oAWgIR0CRioSPluFYdX2UKGgGR0BspM6ij+JhaAdNmgFoCEdAkYskwFkhBHV9lChoBkdAbbatsenyeGgHTe8BaAhHQJGcJWtEG7l1fZQoaAZHQG8R6Yu01IloB02OAWgIR0CRnPd4VymzdX2UKGgGR0BwSaOcUdq+aAdNygFoCEdAkZ2weFL39XV9lChoBkdAbuqsxwhnrmgHTY4BaAhHQJGd2Rq46Op1fZQoaAZHQENWAjps41hoB03oA2gIR0CRno3FUADJdX2UKGgGR0BsfT1mJ3xGaAdNTgFoCEdAkZ+VkQPI4nV9lChoBkdAcXv39aUzK2gHTTABaAhHQJGfrKr7wa11fZQoaAZHQHHsF85S3spoB00wAWgIR0CRoFiRnvlVdX2UKGgGR0Bv7Mth/iHZaAdNYQFoCEdAkaP/hl18s3V9lChoBkdAcC3PWxyGSWgHTXEBaAhHQJGkWXPZ7HB1fZQoaAZHQHBKnJcPe55oB01vAWgIR0CRpqmEXcgydX2UKGgGR0BwXvVmSQo1aAdNUgFoCEdAkaa3wLE1mHV9lChoBkdAcCyaMaS9umgHTT8BaAhHQJGnNvo/zJ91fZQoaAZHQHD+VSKm8/VoB01dAWgIR0CRp9gaWHDadX2UKGgGR0BaNVCgK4QSaAdN6ANoCEdAkahIfOlfq3V9lChoBkdAazjO32EkB2gHTS8BaAhHQJGosnYxtYV1fZQoaAZHQG9PZxJd0JZoB00sAWgIR0CRqd+mFajfdX2UKGgGR0Bwo4QtjCpFaAdNkAFoCEdAkaoRAOavzXV9lChoBkdAboY3PRiPQ2gHTToBaAhHQJGrJ2X9itt1fZQoaAZHQG6b3MyJsO5oB01sAWgIR0CRrF6zmfXgdX2UKGgGR0BwaOU7jkuIaAdNWQFoCEdAka6S1uzhP3V9lChoBkdAb/AO+ZgG8mgHTcIBaAhHQJGuvu0CzTp1fZQoaAZHQG00VIRRMvhoB01YAWgIR0CRr08gIQe4dX2UKGgGR0BvgqmVJL/TaAdNoQFoCEdAkbEmQSzw+nV9lChoBkdAb8z86V+qi2gHTUIBaAhHQJGyOij+Jgt1fZQoaAZHQHEN82NvOyFoB01yAWgIR0CRs9dlNDc/dX2UKGgGR0BwKO3y7PIGaAdNQQFoCEdAkbSVh1DBuXV9lChoBkdAcZfIC2c8T2gHTSsBaAhHQJG1nqnm7rd1fZQoaAZHQHEwundfsu5oB01dAWgIR0CRtcNahYeUdX2UKGgGR0Bu9mOn2qT9aAdNUwFoCEdAkbZnxaxHG3V9lChoBkdAcBwizsyBTWgHTUsBaAhHQJG37pxFRYR1fZQoaAZHQGz/GNrCWNZoB02CAWgIR0CRuLeWfK6ndX2UKGgGR0BxJESZjQRgaAdNQQFoCEdAkbjCs4ku6HV9lChoBkdAbjVedkJ8fGgHTZ4BaAhHQJG4zAHmig11fZQoaAZHQHLAj1schkloB01yAWgIR0CRuzS+g13udX2UKGgGR0BvWcxIre67aAdNsAFoCEdAkbtOZ5Rj0HV9lChoBkdAbfm/vfCQ92gHTWwBaAhHQJG8wYXO4Xp1fZQoaAZHQHA49UOuq3poB01IAWgIR0CRvkrXUYsNdX2UKGgGR0Bu9vqcEvCeaAdNfAFoCEdAkb53E61b7nV9lChoBkdAb9utEG7jDWgHTWsBaAhHQJHAzAwfyPN1fZQoaAZHQG9JGvW6K+BoB01tAWgIR0CRwpKHwgDBdX2UKGgGR0BxgqFvhqCZaAdNaAFoCEdAkcQMeGO+7HV9lChoBkdAbo4cSXdCV2gHTV0BaAhHQJHEdJtix3V1fZQoaAZHQHABWyPdVNpoB01yAWgIR0CRxKZ8a4tpdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVIwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeC9ob21lL3JsL1B5Y2hhcm1Qcm9qZWN0cy9PcHRpbWl6ZWRMdW5hckxhbmRlci12Mi1QUE8vdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMeC9ob21lL3JsL1B5Y2hhcm1Qcm9qZWN0cy9PcHRpbWl6ZWRMdW5hckxhbmRlci12Mi1QUE8vdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVIwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeC9ob21lL3JsL1B5Y2hhcm1Qcm9qZWN0cy9PcHRpbWl6ZWRMdW5hckxhbmRlci12Mi1QUE8vdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMeC9ob21lL3JsL1B5Y2hhcm1Qcm9qZWN0cy9PcHRpbWl6ZWRMdW5hckxhbmRlci12Mi1QUE8vdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.8.0-51-generic-x86_64-with-glibc2.35 # 52~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Dec 9 15:00:52 UTC 2", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "False", "Numpy": "1.26.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1"}}
|
ppo-lunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce794ecd74875cb90921e0ff03b96ee90893272e741d4ad4e0d29b7138b4acc4
|
3 |
+
size 146531
|
ppo-lunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c71e4c55ea0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c71e4c55f30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c71e4c55fc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c71e4c56050>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c71e4c560e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c71e4c56170>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c71e4c56200>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c71e4c56290>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c71e4c56320>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c71e4c563b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c71e4c56440>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c71e4c564d0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c71e4c45480>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1738457598664172604,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo5fj3W3JY/GDYlPQbjl74AWxY9PU5OPQAAAAAAAAAAzb68PSkIb7qIeom5bUvxuIe1zblQS7s4AACAPwAAAABNXi49FOycuijz2jmC6o+01c2KOrKJ/LgAAIA/AACAP4bZMr7Pc8I+fo9zPl9Unb6FJIo9Xt7jPAAAAAAAAAAAjVuCvYRPQT4jiKu8vtZlvsr6lL3O/oi9AAAAAAAAAAAzn6A81m23Py9vKz6nQTK93yO9u/7zDz0AAAAAAAAAAKrMhj6ttzi9irx9PLTTELuJ+qG+GAzSuwAAgD8AAIA/zbXiPE5yrbyRPC089klOPcd71D0/3Ai8AACAPwAAgD8znWa8RKGoP4Orzb1Un5W+gQ6OvVIzZL0AAAAAAAAAAOYmgT2x7VM+umhHPXs0Gb4ePGg90sY6PQAAAAAAAAAA6kOMPhTKc73F0iQ9cOvqu+GYzr7et6S8AACAPwAAgD/NpHQ+IJlNP111Ar2n0JK+mpyOPHeNO70AAAAAAAAAAIBaZz3ZMxM/uv9LvcESWb4+EaG7UNZDvQAAAAAAAAAAM0AOvm+lrT8sowq/hbmSvhmOdr779oW+AAAAAAAAAABNf7m9XzI2PibVOD4rPjW+438UPK7ErDwAAAAAAAAAALP2Bj7Xsyi7NdiNvRt2Ub04SUM9i60wPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6Ml/hESdyMAWyUTUgBjAF0lEdAkU81GCqZMXV9lChoBkdAclNqQiiZfGgHTYYBaAhHQJFPWJ/G2kV1fZQoaAZHQG49uQp4KQdoB01eAWgIR0CRUO3u/k/9dX2UKGgGR0BsG8YsNDtxaAdNgAFoCEdAkVF91IRRM3V9lChoBkdAcK1Gs3hn8WgHTYcBaAhHQJFSAvEjxCp1fZQoaAZHQG/pj7ALy+ZoB01LAWgIR0CRU25CngpCdX2UKGgGR0Btrso+fRNRaAdNMwFoCEdAkVRO2Zy+6HV9lChoBkdAb8D/YraufWgHTVMBaAhHQJFV637UG3Z1fZQoaAZHQG3eUPpY9xJoB01dAWgIR0CRVirRjSXudX2UKGgGR0ByGZr433pOaAdNSwFoCEdAkVZCQLeANHV9lChoBkdAba667ulXR2gHTXcBaAhHQJFWbyLAHml1fZQoaAZHQHCicgyM1j1oB01eAWgIR0CRVs2dd3SsdX2UKGgGR0BOpfh/Aj6faAdNEQFoCEdAkVbloUSIxnV9lChoBkdATC7BO58Sf2gHS+poCEdAkVltfb9IgHV9lChoBkdAcnuJUYKpk2gHTU4BaAhHQJFl7QPZqVR1fZQoaAZHQGtynPu5SWJoB01UAWgIR0CRZkxmTTvzdX2UKGgGR0Bux3l2eQMhaAdNTAFoCEdAkWccvIwM6XV9lChoBkdAcAktdRiw0WgHTXgBaAhHQJFpC6f8Mux1fZQoaAZHQG4pm5c1O0toB01wAWgIR0CRbBZkCmuUdX2UKGgGR0Bx/pKwpvxZaAdNmwFoCEdAkWxEzoEB83V9lChoBkdAcrIIIF/x2GgHTUYBaAhHQJFtWqIacZt1fZQoaAZHQG+0ktVaOghoB009AWgIR0CRbWNt65XmdX2UKGgGR0BvCbehwl0HaAdNQwFoCEdAkW1/VurIYHV9lChoBkdAbsNgJC0F82gHTXQBaAhHQJFtdpHqeK91fZQoaAZHQG2dJ4KQaJhoB00/AWgIR0CRbZdcjZ+QdX2UKGgGR0Bczbwz+FURaAdN6ANoCEdAkW6vcrRSg3V9lChoBkdAbT8/cnE2pGgHTVEBaAhHQJFuvnIQvpR1fZQoaAZHQHG7QB91EE1oB03tAWgIR0CRb7ar3j+8dX2UKGgGR0Bvf+9OARTTaAdNfwFoCEdAkXAy6cy31HV9lChoBkdAaw4dGy5ZsGgHTUwBaAhHQJFxNPP9kz51fZQoaAZHQHBM4TCcf/5oB005AWgIR0CRciII4VASdX2UKGgGR0BvOnYxtYSyaAdNUAFoCEdAkXKU2cawU3V9lChoBkdAcaOhuO0b+GgHTVgBaAhHQJFzpoIv8Il1fZQoaAZHQEluSGJvYOFoB00QAWgIR0CRdmAaNuLrdX2UKGgGR0ByfA8aGYa6aAdNTgFoCEdAkXfHdXT3I3V9lChoBkdAayJScbzbvmgHTT4BaAhHQJF4Tj7yhBZ1fZQoaAZHQGvBpT2nKnxoB01ZAWgIR0CReVHDaXa8dX2UKGgGR0BxMZiExqO+aAdNSAFoCEdAkXoNkrf+CXV9lChoBkdAbVGt5D7ZWmgHTYkBaAhHQJF6VVghKUV1fZQoaAZHQG5vDEehf0FoB018AWgIR0CRer+fh/AkdX2UKGgGR0BtgA3WFvhqaAdNjAFoCEdAkXteWWyC4HV9lChoBkdAbZ3SCOFQEmgHTYQBaAhHQJF8JQVKwpx1fZQoaAZHQG8cab4Ju2toB01sAWgIR0CRfIRzRx95dX2UKGgGR0BuiDdpItlJaAdNVQFoCEdAkX1ea8YhuHV9lChoBkdAcQFYlY2bX2gHTX4BaAhHQJF9hW3jMmp1fZQoaAZHQHCKI+Sr5qNoB008AWgIR0CRfgHVPN3XdX2UKGgGR0Br/yH6/IsAaAdNkQFoCEdAkYIWE9Mbm3V9lChoBkdAcHfxWT5ft2gHTWYBaAhHQJGDZvze41B1fZQoaAZHQGzxqt5le4VoB01fAWgIR0CRhFe7tiQUdX2UKGgGR0BsHTyhBZ6laAdNQwFoCEdAkYXEaESM+HV9lChoBkdAbRnZoPCl8GgHTXsBaAhHQJGGFI6Kcd51fZQoaAZHQHC2lYlpoK5oB01vAWgIR0CRiFoiLVFydX2UKGgGR0BxQhO6/ZdwaAdNnwFoCEdAkYnSiudPL3V9lChoBkdAbusk3S8aoGgHTUIBaAhHQJGKTN1QqI91fZQoaAZHQHBpJ1zQu29oB01oAWgIR0CRioSPluFYdX2UKGgGR0BspM6ij+JhaAdNmgFoCEdAkYskwFkhBHV9lChoBkdAbbatsenyeGgHTe8BaAhHQJGcJWtEG7l1fZQoaAZHQG8R6Yu01IloB02OAWgIR0CRnPd4VymzdX2UKGgGR0BwSaOcUdq+aAdNygFoCEdAkZ2weFL39XV9lChoBkdAbuqsxwhnrmgHTY4BaAhHQJGd2Rq46Op1fZQoaAZHQENWAjps41hoB03oA2gIR0CRno3FUADJdX2UKGgGR0BsfT1mJ3xGaAdNTgFoCEdAkZ+VkQPI4nV9lChoBkdAcXv39aUzK2gHTTABaAhHQJGfrKr7wa11fZQoaAZHQHHsF85S3spoB00wAWgIR0CRoFiRnvlVdX2UKGgGR0Bv7Mth/iHZaAdNYQFoCEdAkaP/hl18s3V9lChoBkdAcC3PWxyGSWgHTXEBaAhHQJGkWXPZ7HB1fZQoaAZHQHBKnJcPe55oB01vAWgIR0CRpqmEXcgydX2UKGgGR0BwXvVmSQo1aAdNUgFoCEdAkaa3wLE1mHV9lChoBkdAcCyaMaS9umgHTT8BaAhHQJGnNvo/zJ91fZQoaAZHQHD+VSKm8/VoB01dAWgIR0CRp9gaWHDadX2UKGgGR0BaNVCgK4QSaAdN6ANoCEdAkahIfOlfq3V9lChoBkdAazjO32EkB2gHTS8BaAhHQJGosnYxtYV1fZQoaAZHQG9PZxJd0JZoB00sAWgIR0CRqd+mFajfdX2UKGgGR0Bwo4QtjCpFaAdNkAFoCEdAkaoRAOavzXV9lChoBkdAboY3PRiPQ2gHTToBaAhHQJGrJ2X9itt1fZQoaAZHQG6b3MyJsO5oB01sAWgIR0CRrF6zmfXgdX2UKGgGR0BwaOU7jkuIaAdNWQFoCEdAka6S1uzhP3V9lChoBkdAb/AO+ZgG8mgHTcIBaAhHQJGuvu0CzTp1fZQoaAZHQG00VIRRMvhoB01YAWgIR0CRr08gIQe4dX2UKGgGR0BvgqmVJL/TaAdNoQFoCEdAkbEmQSzw+nV9lChoBkdAb8z86V+qi2gHTUIBaAhHQJGyOij+Jgt1fZQoaAZHQHEN82NvOyFoB01yAWgIR0CRs9dlNDc/dX2UKGgGR0BwKO3y7PIGaAdNQQFoCEdAkbSVh1DBuXV9lChoBkdAcZfIC2c8T2gHTSsBaAhHQJG1nqnm7rd1fZQoaAZHQHEwundfsu5oB01dAWgIR0CRtcNahYeUdX2UKGgGR0Bu9mOn2qT9aAdNUwFoCEdAkbZnxaxHG3V9lChoBkdAcBwizsyBTWgHTUsBaAhHQJG37pxFRYR1fZQoaAZHQGz/GNrCWNZoB02CAWgIR0CRuLeWfK6ndX2UKGgGR0BxJESZjQRgaAdNQQFoCEdAkbjCs4ku6HV9lChoBkdAbjVedkJ8fGgHTZ4BaAhHQJG4zAHmig11fZQoaAZHQHLAj1schkloB01yAWgIR0CRuzS+g13udX2UKGgGR0BvWcxIre67aAdNsAFoCEdAkbtOZ5Rj0HV9lChoBkdAbfm/vfCQ92gHTWwBaAhHQJG8wYXO4Xp1fZQoaAZHQHA49UOuq3poB01IAWgIR0CRvkrXUYsNdX2UKGgGR0Bu9vqcEvCeaAdNfAFoCEdAkb53E61b7nV9lChoBkdAb9utEG7jDWgHTWsBaAhHQJHAzAwfyPN1fZQoaAZHQG9JGvW6K+BoB01tAWgIR0CRwpKHwgDBdX2UKGgGR0BxgqFvhqCZaAdNaAFoCEdAkcQMeGO+7HV9lChoBkdAbo4cSXdCV2gHTV0BaAhHQJHEdJtix3V1fZQoaAZHQHABWyPdVNpoB01yAWgIR0CRxKZ8a4tpdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
ppo-lunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87545
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db0ffb590964385ea92abfea0f82d9dab04edb578d00f671f4bf777d43b5c2aa
|
3 |
size 87545
|
ppo-lunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d5d58338778be1afa2c7a891b3d9c636aef7477a9c5962d2983df1dc1df84e7
|
3 |
size 43201
|
ppo-lunarLander-v2/system_info.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
- OS: Linux-6.8.0-
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.0.1+cu117
|
|
|
1 |
+
- OS: Linux-6.8.0-51-generic-x86_64-with-glibc2.35 # 52~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Dec 9 15:00:52 UTC 2
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.0.1+cu117
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 247.91722640000003, "std_reward": 17.429072782504676, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-02-01T20:12:28.417209"}
|