samuelcolvin26 commited on
Commit
dd2035f
·
verified ·
1 Parent(s): 5b4e3f3

End of training

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/electra-base-discriminator
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - f1
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: Electra_Hatespeech_Classifier5
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # Electra_Hatespeech_Classifier5
20
+
21
+ This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.2370
24
+ - F1: 0.9484
25
+ - Accuracy: 0.9629
26
+ - Precision: 0.9540
27
+ - Recall: 0.9428
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 100
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 4
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall |
57
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|:--------:|:---------:|:------:|
58
+ | 0.2066 | 1.0 | 5084 | 0.2209 | 0.8904 | 0.9180 | 0.8624 | 0.9204 |
59
+ | 0.1319 | 2.0 | 10168 | 0.1719 | 0.9290 | 0.9490 | 0.9363 | 0.9218 |
60
+ | 0.0785 | 3.0 | 15252 | 0.2224 | 0.9409 | 0.9582 | 0.9617 | 0.9211 |
61
+ | 0.0365 | 4.0 | 20336 | 0.2370 | 0.9484 | 0.9629 | 0.9540 | 0.9428 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.39.3
67
+ - Pytorch 2.1.2
68
+ - Datasets 2.18.0
69
+ - Tokenizers 0.15.2