--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: whisper-tiny-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.89 --- # whisper-tiny-finetuned-gtzan This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4064 - Accuracy: 0.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.988 | 1.0 | 57 | 1.4201 | 0.58 | | 0.4825 | 2.0 | 114 | 0.7614 | 0.83 | | 0.5993 | 3.0 | 171 | 0.5825 | 0.83 | | 0.1427 | 4.0 | 228 | 0.4283 | 0.88 | | 0.0461 | 5.0 | 285 | 0.3900 | 0.88 | | 0.0438 | 6.0 | 342 | 0.4485 | 0.86 | | 0.0171 | 7.0 | 399 | 0.3320 | 0.91 | | 0.0182 | 8.0 | 456 | 0.3799 | 0.9 | | 0.0066 | 9.0 | 513 | 0.3901 | 0.88 | | 0.0077 | 10.0 | 570 | 0.4064 | 0.89 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3