|
|
|
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt |
|
from matplotlib.ticker import MaxNLocator |
|
import tiktoken |
|
import torch |
|
import torch.nn as nn |
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
|
|
class GPTDatasetV1(Dataset): |
|
def __init__(self, txt, tokenizer, max_length, stride): |
|
self.input_ids = [] |
|
self.target_ids = [] |
|
|
|
|
|
token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"}) |
|
|
|
|
|
for i in range(0, len(token_ids) - max_length, stride): |
|
input_chunk = token_ids[i:i + max_length] |
|
target_chunk = token_ids[i + 1: i + max_length + 1] |
|
self.input_ids.append(torch.tensor(input_chunk)) |
|
self.target_ids.append(torch.tensor(target_chunk)) |
|
|
|
def __len__(self): |
|
return len(self.input_ids) |
|
|
|
def __getitem__(self, idx): |
|
return self.input_ids[idx], self.target_ids[idx] |
|
|
|
|
|
def create_dataloader_v1(txt, batch_size=4, max_length=256, |
|
stride=128, shuffle=True, drop_last=True, num_workers=0): |
|
|
|
tokenizer = tiktoken.get_encoding("gpt2") |
|
|
|
|
|
dataset = GPTDatasetV1(txt, tokenizer, max_length, stride) |
|
|
|
|
|
dataloader = DataLoader( |
|
dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers) |
|
|
|
return dataloader |
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False): |
|
super().__init__() |
|
assert d_out % num_heads == 0, "d_out must be divisible by num_heads" |
|
|
|
self.d_out = d_out |
|
self.num_heads = num_heads |
|
self.head_dim = d_out // num_heads |
|
|
|
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) |
|
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) |
|
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) |
|
self.out_proj = nn.Linear(d_out, d_out) |
|
self.dropout = nn.Dropout(dropout) |
|
self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1)) |
|
|
|
def forward(self, x): |
|
b, num_tokens, d_in = x.shape |
|
|
|
keys = self.W_key(x) |
|
queries = self.W_query(x) |
|
values = self.W_value(x) |
|
|
|
|
|
|
|
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) |
|
values = values.view(b, num_tokens, self.num_heads, self.head_dim) |
|
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) |
|
|
|
|
|
keys = keys.transpose(1, 2) |
|
queries = queries.transpose(1, 2) |
|
values = values.transpose(1, 2) |
|
|
|
|
|
attn_scores = queries @ keys.transpose(2, 3) |
|
|
|
|
|
mask_bool = self.mask.bool()[:num_tokens, :num_tokens] |
|
|
|
|
|
attn_scores.masked_fill_(mask_bool, -torch.inf) |
|
|
|
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) |
|
attn_weights = self.dropout(attn_weights) |
|
|
|
|
|
context_vec = (attn_weights @ values).transpose(1, 2) |
|
|
|
|
|
context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out) |
|
context_vec = self.out_proj(context_vec) |
|
|
|
return context_vec |
|
|
|
|
|
class LayerNorm(nn.Module): |
|
def __init__(self, emb_dim): |
|
super().__init__() |
|
self.eps = 1e-5 |
|
self.scale = nn.Parameter(torch.ones(emb_dim)) |
|
self.shift = nn.Parameter(torch.zeros(emb_dim)) |
|
|
|
def forward(self, x): |
|
mean = x.mean(dim=-1, keepdim=True) |
|
var = x.var(dim=-1, keepdim=True, unbiased=False) |
|
norm_x = (x - mean) / torch.sqrt(var + self.eps) |
|
return self.scale * norm_x + self.shift |
|
|
|
|
|
class GELU(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, x): |
|
return 0.5 * x * (1 + torch.tanh( |
|
torch.sqrt(torch.tensor(2.0 / torch.pi)) * |
|
(x + 0.044715 * torch.pow(x, 3)) |
|
)) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, cfg): |
|
super().__init__() |
|
self.layers = nn.Sequential( |
|
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), |
|
GELU(), |
|
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]), |
|
) |
|
|
|
def forward(self, x): |
|
return self.layers(x) |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
def __init__(self, cfg): |
|
super().__init__() |
|
self.att = MultiHeadAttention( |
|
d_in=cfg["emb_dim"], |
|
d_out=cfg["emb_dim"], |
|
context_length=cfg["context_length"], |
|
num_heads=cfg["n_heads"], |
|
dropout=cfg["drop_rate"], |
|
qkv_bias=cfg["qkv_bias"]) |
|
self.ff = FeedForward(cfg) |
|
self.norm1 = LayerNorm(cfg["emb_dim"]) |
|
self.norm2 = LayerNorm(cfg["emb_dim"]) |
|
self.drop_shortcut = nn.Dropout(cfg["drop_rate"]) |
|
|
|
def forward(self, x): |
|
|
|
shortcut = x |
|
x = self.norm1(x) |
|
x = self.att(x) |
|
x = self.drop_shortcut(x) |
|
x = x + shortcut |
|
|
|
|
|
shortcut = x |
|
x = self.norm2(x) |
|
x = self.ff(x) |
|
x = self.drop_shortcut(x) |
|
x = x + shortcut |
|
|
|
return x |
|
|
|
|
|
class GPTModel(nn.Module): |
|
def __init__(self, cfg): |
|
super().__init__() |
|
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) |
|
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) |
|
self.drop_emb = nn.Dropout(cfg["drop_rate"]) |
|
|
|
self.trf_blocks = nn.Sequential( |
|
*[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) |
|
|
|
self.final_norm = LayerNorm(cfg["emb_dim"]) |
|
self.out_head = nn.Linear( |
|
cfg["emb_dim"], cfg["vocab_size"], bias=False |
|
) |
|
|
|
def forward(self, in_idx): |
|
batch_size, seq_len = in_idx.shape |
|
tok_embeds = self.tok_emb(in_idx) |
|
pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) |
|
x = tok_embeds + pos_embeds |
|
x = self.drop_emb(x) |
|
x = self.trf_blocks(x) |
|
x = self.final_norm(x) |
|
logits = self.out_head(x) |
|
return logits |
|
|
|
|
|
def calc_loss_batch(input_batch, target_batch, model, device): |
|
input_batch, target_batch = input_batch.to(device), target_batch.to(device) |
|
logits = model(input_batch) |
|
loss = torch.nn.functional.cross_entropy(logits.flatten(0, 1), target_batch.flatten()) |
|
return loss |
|
|
|
|
|
def calc_loss_loader(data_loader, model, device, num_batches=None): |
|
total_loss = 0. |
|
if len(data_loader) == 0: |
|
return float("nan") |
|
elif num_batches is None: |
|
num_batches = len(data_loader) |
|
else: |
|
|
|
|
|
num_batches = min(num_batches, len(data_loader)) |
|
for i, (input_batch, target_batch) in enumerate(data_loader): |
|
if i < num_batches: |
|
loss = calc_loss_batch(input_batch, target_batch, model, device) |
|
total_loss += loss.item() |
|
else: |
|
break |
|
return total_loss / num_batches |
|
|
|
|
|
def evaluate_model(model, train_loader, val_loader, device, eval_iter): |
|
model.eval() |
|
with torch.no_grad(): |
|
train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter) |
|
val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter) |
|
model.train() |
|
return train_loss, val_loss |
|
|
|
|
|
def text_to_token_ids(text, tokenizer): |
|
encoded = tokenizer.encode(text, allowed_special={'<|endoftext|>'}) |
|
encoded_tensor = torch.tensor(encoded).unsqueeze(0) |
|
return encoded_tensor |
|
|
|
|
|
def token_ids_to_text(token_ids, tokenizer): |
|
flat = token_ids.squeeze(0) |
|
return tokenizer.decode(flat.tolist()) |
|
|
|
|
|
def generate_and_print_sample(model, tokenizer, device, start_context): |
|
model.eval() |
|
context_size = model.pos_emb.weight.shape[0] |
|
encoded = text_to_token_ids(start_context, tokenizer).to(device) |
|
with torch.no_grad(): |
|
token_ids = generate_text_simple( |
|
model=model, idx=encoded, |
|
max_new_tokens=50, context_size=context_size |
|
) |
|
decoded_text = token_ids_to_text(token_ids, tokenizer) |
|
print(decoded_text.replace("\n", " ")) |
|
model.train() |
|
|
|
|
|
def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses): |
|
fig, ax1 = plt.subplots(figsize=(5, 3)) |
|
|
|
|
|
ax1.plot(epochs_seen, train_losses, label="Training loss") |
|
ax1.plot(epochs_seen, val_losses, linestyle="-.", label="Validation loss") |
|
ax1.set_xlabel("Epochs") |
|
ax1.set_ylabel("Loss") |
|
ax1.legend(loc="upper right") |
|
ax1.xaxis.set_major_locator(MaxNLocator(integer=True)) |
|
|
|
|
|
ax2 = ax1.twiny() |
|
ax2.plot(tokens_seen, train_losses, alpha=0) |
|
ax2.set_xlabel("Tokens seen") |
|
|
|
fig.tight_layout() |
|
plt.savefig("loss-plot.pdf") |
|
plt.show() |
|
|
|
|
|
def generate_text_simple(model, idx, max_new_tokens, context_size): |
|
|
|
for _ in range(max_new_tokens): |
|
|
|
|
|
|
|
|
|
idx_cond = idx[:, -context_size:] |
|
|
|
|
|
with torch.no_grad(): |
|
logits = model(idx_cond) |
|
|
|
|
|
|
|
logits = logits[:, -1, :] |
|
|
|
|
|
probas = torch.softmax(logits, dim=-1) |
|
|
|
|
|
idx_next = torch.argmax(probas, dim=-1, keepdim=True) |
|
|
|
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
|
|
return idx |