samzoozi commited on
Commit
83e7269
·
1 Parent(s): 2a6d907

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.14 +/- 0.07
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:654e75a1a38d5d41b6fe9ae64071421db2c1c5d13f824dfa72c0e3215df3337e
3
+ size 108251
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7976adf265f0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7976adf290c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1699501242378492412,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAli5ov1pGvb9n1qu/BZCTPj5dkro+qd8+mQ7Qva9/fL7H/kO+5zKUv3gAiT+szxTAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASmYdv0BApr/Sm4S/VfzavYiznz+DTKE+58UOvYyj+D2I9J2/egGGvoEqFT60f5e/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACWLmi/Wka9v2fWq7+fzj6/xaN0v29sb78FkJM+Pl2Suj6p3z5P7/o+ot9FuyJrxj6ZDtC9r398vsf+Q74ZbNa/syRZvo1oqr/nMpS/eACJP6zPFMCk+AO/u34qvhNHmb+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-9.0696084e-01 -1.4787095e+00 -1.3424805e+00]\n [ 2.8820816e-01 -1.1166704e-03 4.3683809e-01]\n [-1.0159034e-01 -2.4658082e-01 -1.9140159e-01]\n [-1.1578034e+00 1.0703268e+00 -2.3251753e+00]]",
34
+ "desired_goal": "[[-0.61484206 -1.2988358 -1.0360053 ]\n [-0.1069266 1.2476664 0.31503686]\n [-0.0348567 0.12140569 -1.234025 ]\n [-0.26173002 0.14566995 -1.1835847 ]]",
35
+ "observation": "[[-9.0696084e-01 -1.4787095e+00 -1.3424805e+00 -7.4534029e-01\n -9.5562392e-01 -9.3524832e-01]\n [ 2.8820816e-01 -1.1166704e-03 4.3683809e-01 4.9010703e-01\n -3.0193110e-03 3.8753611e-01]\n [-1.0159034e-01 -2.4658082e-01 -1.9140159e-01 -1.6751739e+00\n -2.1205406e-01 -1.3313156e+00]\n [-1.1578034e+00 1.0703268e+00 -2.3251753e+00 -5.1551270e-01\n -1.6649906e-01 -1.1974815e+00]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoEwuvF/ZsL2Albc99idWPbKy4D1aOZA+tQ22PaWg+bzZNV4+5kxlvWE4572T1Ec+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.01063839 -0.0863521 0.08964062]\n [ 0.0522842 0.10971583 0.28168756]\n [ 0.08889333 -0.03047211 0.21700229]\n [-0.05598154 -0.1129005 0.19514684]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8xVIZqEeySMAWyUSwOMAXSUR0CkaYTC+De1dX2UKGgGR7/A2MsH0K7aaAdLAmgIR0CkaU8WbgCPdX2UKGgGR7/YMuOCGvfTaAdLBGgIR0CkacY1xbSrdX2UKGgGR7/Df779AHE/aAdLAmgIR0CkaYz19ORDdX2UKGgGR7/EwGGEf1YhaAdLAmgIR0CkaVl/6O5sdX2UKGgGR7/cP1+RYA80aAdLB2gIR0CkagolMRHxdX2UKGgGR7++zeGfwqiHaAdLAmgIR0CkadCaRZEEdX2UKGgGR7+U78vVVghKaAdLAWgIR0CkaV22G7BgdX2UKGgGR7/T4xUNrj5saAdLA2gIR0CkaZs9r434dX2UKGgGR7+hdnkDIRywaAdLAWgIR0CkaZ/zjFQ3dX2UKGgGR7+/0z0pVjqfaAdLAmgIR0CkaWZ1/2CedX2UKGgGR7/SWpqASWZ7aAdLA2gIR0Ckahcqe9SNdX2UKGgGR7/Q9ovi97F9aAdLA2gIR0Ckad2vB7/odX2UKGgGR7+jz3AVO9FnaAdLAWgIR0CkaaSUcGTtdX2UKGgGR7+PjCHh0hePaAdLAWgIR0CkaeTFERapdX2UKGgGR7/ApKBd2PkraAdLAmgIR0Ckaa9ovi97dX2UKGgGR7/G7vG6wt8NaAdLA2gIR0CkaXXsolUqdX2UKGgGR7/Nvd/J/5LzaAdLBGgIR0CkairkS26TdX2UKGgGR7/Shz/6wdKeaAdLA2gIR0CkafFqzqrzdX2UKGgGR7/CHUMG5c1PaAdLAmgIR0CkabgqNIbwdX2UKGgGR7+GDQJHAh0RaAdLAWgIR0Ckai8nmaH9dX2UKGgGR7+oIKMNtqHoaAdLAWgIR0CkabwiiZfEdX2UKGgGR7/Q4wh4dIXkaAdLA2gIR0CkaYKdhAnldX2UKGgGR7+VoYekpI+XaAdLAWgIR0CkaYk8RtgsdX2UKGgGR7/M/s3Q2MsIaAdLA2gIR0CkagB9Tgl4dX2UKGgGR7/MOtnwob4raAdLA2gIR0Ckaj4/mknDdX2UKGgGR7/VcUM5OrQxaAdLBGgIR0Ckac7ojfNzdX2UKGgGR7/LUvPC2tuDaAdLA2gIR0CkagxMWXTmdX2UKGgGR7/eQgs9SuQqaAdLBGgIR0CkaZlJxvNvdX2UKGgGR7/L2M85jpcHaAdLA2gIR0CkakxXwLE2dX2UKGgGR7+wxM36yjYaaAdLAmgIR0CkahaA4GUwdX2UKGgGR7/NHPu5SWJKaAdLA2gIR0Ckad1Iqbz9dX2UKGgGR7+5W+49X9zfaAdLAmgIR0CkalRQaaTfdX2UKGgGR7/MugYgq3EyaAdLA2gIR0CkaafWUbDNdX2UKGgGR7+7eMyad+XraAdLAmgIR0Ckah7Rv3rVdX2UKGgGR7+xYp2ECeVcaAdLAmgIR0Ckaa+JgsshdX2UKGgGR7/PpB5X2dupaAdLA2gIR0CkamL9MsYmdX2UKGgGR7+u4/eLvTgEaAdLAmgIR0CkaimO2iL3dX2UKGgGR7/Z+vyLAHmjaAdLBGgIR0CkafBEKE39dX2UKGgGR7/U8XvYvnKXaAdLA2gIR0Ckab39itq6dX2UKGgGR7/NrWRRuTA4aAdLA2gIR0Ckam9Lg4wRdX2UKGgGR7/M5kK/mDDkaAdLA2gIR0Ckaf1+I/JOdX2UKGgGR7+2piqhlDneaAdLAmgIR0CkacqIBRyfdX2UKGgGR7+2j+Jgssg/aAdLAmgIR0CkagrThHbzdX2UKGgGR7/dQN0/4ZdfaAdLBGgIR0CkaoV+7UXpdX2UKGgGR7/SSAYpDu0DaAdLA2gIR0CkadklE7W/dX2UKGgGR7/iHOjZcs19aAdLCGgIR0CkalAy/KyOdX2UKGgGR7/QRKpT/ACXaAdLA2gIR0Ckahbv5P/JdX2UKGgGR7/KpsoDxLCfaAdLA2gIR0CkaedZJTVEdX2UKGgGR7/Y6nR9gF5faAdLBGgIR0Ckapg3kxREdX2UKGgGR7/UJbMX7+DOaAdLA2gIR0Ckal6rWAf/dX2UKGgGR7/Rfq5byH2zaAdLA2gIR0CkaiVawD/3dX2UKGgGR7/Fpxm03Ov/aAdLAmgIR0Ckamditq59dX2UKGgGR7+z4EfT1CgLaAdLAmgIR0Ckai4wZflZdX2UKGgGR7/NX0XgtOEeaAdLA2gIR0CkafTmfXf7dX2UKGgGR7/FGiHqNZNgaAdLA2gIR0CkaqWX9itrdX2UKGgGR7/AEbHZK3/haAdLAmgIR0Ckaf/aHsTndX2UKGgGR7/EIa99MK1HaAdLAmgIR0CkarBi1AqvdX2UKGgGR7/O2UjcEeQuaAdLA2gIR0CkanbxVhkRdX2UKGgGR7/MbXHzYmLMaAdLA2gIR0Ckaj3We6I4dX2UKGgGR7+0IfKZDzAfaAdLAmgIR0Ckarh5ooNNdX2UKGgGR7/AGJvYODraaAdLAmgIR0CkakWPkq+bdX2UKGgGR7/Rc4YJmdy1aAdLA2gIR0CkagwarFOxdX2UKGgGR7+loJzDGcWkaAdLAWgIR0Ckag/+0gKXdX2UKGgGR7++r92ovSMMaAdLAmgIR0CkasMXSBsidX2UKGgGR7/WqFAVwgkkaAdLBGgIR0Ckaom3vx6OdX2UKGgGR7+mgDifg75maAdLAWgIR0CkahbXHzYmdX2UKGgGR7/TNGEwnH/+aAdLA2gIR0CkalRJEpiJdX2UKGgGR7+l2s7uDzy0aAdLAWgIR0CkahrKFIuodX2UKGgGR7++h37k4m1IaAdLAmgIR0CkapHJtBOYdX2UKGgGR7/RWnCO3lS1aAdLBGgIR0CkatLzoUzsdX2UKGgGR7/Wva11GLDRaAdLBGgIR0Ckamb79AHFdX2UKGgGR7/V0waisXBQaAdLBGgIR0Ckai2D6FdtdX2UKGgGR7+98MNMGorGaAdLAmgIR0Ckat4iX6ZZdX2UKGgGR7/Xe3hGYrrgaAdLBGgIR0CkaqSnDR+jdX2UKGgGR7/MHY6GQCCBaAdLA2gIR0CkanOFQEZBdX2UKGgGR7/NSF49ovi+aAdLA2gIR0CkautMfzSUdX2UKGgGR7/Smois4ku6aAdLA2gIR0CkarHPVurIdX2UKGgGR7/YlZHNHH3laAdLBGgIR0Ckaj8a4tpVdX2UKGgGR7/Jlp48lolEaAdLA2gIR0CkaoLhisnzdX2UKGgGR7/QG9Htnf2saAdLA2gIR0CkasCB5HEudX2UKGgGR7/WkUbkwN9ZaAdLBGgIR0Ckav5GBnSOdX2UKGgGR7/ZySFGoaUBaAdLBGgIR0CkalGNzbN9dX2UKGgGR7/MTtb9qDbraAdLA2gIR0Ckao9ELH+7dX2UKGgGR7/PGgBcRlH0aAdLA2gIR0Ckas881XNkdX2UKGgGR7/CHbAUL2HtaAdLAmgIR0CkalxzJZGKdX2UKGgGR7/KiEg4ffXPaAdLA2gIR0Ckaw0gbIcSdX2UKGgGR7/CBq9Gqgh9aAdLAmgIR0CkapqKpDNRdX2UKGgGR7+N9lVcUucuaAdLAWgIR0CkamEZJkGzdX2UKGgGR79eDFqBVdX1aAdLAWgIR0CkamXzMA3ldX2UKGgGR7/Jt0FKTSssaAdLA2gIR0Ckat0Re1KHdX2UKGgGR7/JZDiOvMbFaAdLA2gIR0CkaxrRrrPddX2UKGgGR7/MTeO4oZydaAdLA2gIR0CkaqhrnDBNdX2UKGgGR7++hIvrWy1NaAdLAmgIR0Ckaugy2x6fdX2UKGgGR7/RchTwUg0TaAdLA2gIR0CkanVFYuCgdX2UKGgGR7+nGbTc6/7BaAdLAWgIR0CkankdNnGsdX2UKGgGR7/Qrq+rU9ZBaAdLA2gIR0CkaynNorWidX2UKGgGR7/BTmW+oLofaAdLAmgIR0CkavBUBGQTdX2UKGgGR7/YkDp1RtP6aAdLBGgIR0CkarrPMSsbdX2UKGgGR7/Di6QNkOI7aAdLAmgIR0CkavgdGRV7dWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c80411e9b6a7bb8d8bb45ff04e8f2f9b67cd667a1a40fe59d9d2d07699a1dfa8
3
+ size 45167
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:416a73b2dca51e6f1be883a8bd1eb4ad2766365223028b57abc1b851c5c9c69b
3
+ size 46447
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7976adf265f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7976adf290c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699501242378492412, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAli5ov1pGvb9n1qu/BZCTPj5dkro+qd8+mQ7Qva9/fL7H/kO+5zKUv3gAiT+szxTAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASmYdv0BApr/Sm4S/VfzavYiznz+DTKE+58UOvYyj+D2I9J2/egGGvoEqFT60f5e/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACWLmi/Wka9v2fWq7+fzj6/xaN0v29sb78FkJM+Pl2Suj6p3z5P7/o+ot9FuyJrxj6ZDtC9r398vsf+Q74ZbNa/syRZvo1oqr/nMpS/eACJP6zPFMCk+AO/u34qvhNHmb+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-9.0696084e-01 -1.4787095e+00 -1.3424805e+00]\n [ 2.8820816e-01 -1.1166704e-03 4.3683809e-01]\n [-1.0159034e-01 -2.4658082e-01 -1.9140159e-01]\n [-1.1578034e+00 1.0703268e+00 -2.3251753e+00]]", "desired_goal": "[[-0.61484206 -1.2988358 -1.0360053 ]\n [-0.1069266 1.2476664 0.31503686]\n [-0.0348567 0.12140569 -1.234025 ]\n [-0.26173002 0.14566995 -1.1835847 ]]", "observation": "[[-9.0696084e-01 -1.4787095e+00 -1.3424805e+00 -7.4534029e-01\n -9.5562392e-01 -9.3524832e-01]\n [ 2.8820816e-01 -1.1166704e-03 4.3683809e-01 4.9010703e-01\n -3.0193110e-03 3.8753611e-01]\n [-1.0159034e-01 -2.4658082e-01 -1.9140159e-01 -1.6751739e+00\n -2.1205406e-01 -1.3313156e+00]\n [-1.1578034e+00 1.0703268e+00 -2.3251753e+00 -5.1551270e-01\n -1.6649906e-01 -1.1974815e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoEwuvF/ZsL2Albc99idWPbKy4D1aOZA+tQ22PaWg+bzZNV4+5kxlvWE4572T1Ec+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01063839 -0.0863521 0.08964062]\n [ 0.0522842 0.10971583 0.28168756]\n [ 0.08889333 -0.03047211 0.21700229]\n [-0.05598154 -0.1129005 0.19514684]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8xVIZqEeySMAWyUSwOMAXSUR0CkaYTC+De1dX2UKGgGR7/A2MsH0K7aaAdLAmgIR0CkaU8WbgCPdX2UKGgGR7/YMuOCGvfTaAdLBGgIR0CkacY1xbSrdX2UKGgGR7/Df779AHE/aAdLAmgIR0CkaYz19ORDdX2UKGgGR7/EwGGEf1YhaAdLAmgIR0CkaVl/6O5sdX2UKGgGR7/cP1+RYA80aAdLB2gIR0CkagolMRHxdX2UKGgGR7++zeGfwqiHaAdLAmgIR0CkadCaRZEEdX2UKGgGR7+U78vVVghKaAdLAWgIR0CkaV22G7BgdX2UKGgGR7/T4xUNrj5saAdLA2gIR0CkaZs9r434dX2UKGgGR7+hdnkDIRywaAdLAWgIR0CkaZ/zjFQ3dX2UKGgGR7+/0z0pVjqfaAdLAmgIR0CkaWZ1/2CedX2UKGgGR7/SWpqASWZ7aAdLA2gIR0Ckahcqe9SNdX2UKGgGR7/Q9ovi97F9aAdLA2gIR0Ckad2vB7/odX2UKGgGR7+jz3AVO9FnaAdLAWgIR0CkaaSUcGTtdX2UKGgGR7+PjCHh0hePaAdLAWgIR0CkaeTFERapdX2UKGgGR7/ApKBd2PkraAdLAmgIR0Ckaa9ovi97dX2UKGgGR7/G7vG6wt8NaAdLA2gIR0CkaXXsolUqdX2UKGgGR7/Nvd/J/5LzaAdLBGgIR0CkairkS26TdX2UKGgGR7/Shz/6wdKeaAdLA2gIR0CkafFqzqrzdX2UKGgGR7/CHUMG5c1PaAdLAmgIR0CkabgqNIbwdX2UKGgGR7+GDQJHAh0RaAdLAWgIR0Ckai8nmaH9dX2UKGgGR7+oIKMNtqHoaAdLAWgIR0CkabwiiZfEdX2UKGgGR7/Q4wh4dIXkaAdLA2gIR0CkaYKdhAnldX2UKGgGR7+VoYekpI+XaAdLAWgIR0CkaYk8RtgsdX2UKGgGR7/M/s3Q2MsIaAdLA2gIR0CkagB9Tgl4dX2UKGgGR7/MOtnwob4raAdLA2gIR0Ckaj4/mknDdX2UKGgGR7/VcUM5OrQxaAdLBGgIR0Ckac7ojfNzdX2UKGgGR7/LUvPC2tuDaAdLA2gIR0CkagxMWXTmdX2UKGgGR7/eQgs9SuQqaAdLBGgIR0CkaZlJxvNvdX2UKGgGR7/L2M85jpcHaAdLA2gIR0CkakxXwLE2dX2UKGgGR7+wxM36yjYaaAdLAmgIR0CkahaA4GUwdX2UKGgGR7/NHPu5SWJKaAdLA2gIR0Ckad1Iqbz9dX2UKGgGR7+5W+49X9zfaAdLAmgIR0CkalRQaaTfdX2UKGgGR7/MugYgq3EyaAdLA2gIR0CkaafWUbDNdX2UKGgGR7+7eMyad+XraAdLAmgIR0Ckah7Rv3rVdX2UKGgGR7+xYp2ECeVcaAdLAmgIR0Ckaa+JgsshdX2UKGgGR7/PpB5X2dupaAdLA2gIR0CkamL9MsYmdX2UKGgGR7+u4/eLvTgEaAdLAmgIR0CkaimO2iL3dX2UKGgGR7/Z+vyLAHmjaAdLBGgIR0CkafBEKE39dX2UKGgGR7/U8XvYvnKXaAdLA2gIR0Ckab39itq6dX2UKGgGR7/NrWRRuTA4aAdLA2gIR0Ckam9Lg4wRdX2UKGgGR7/M5kK/mDDkaAdLA2gIR0Ckaf1+I/JOdX2UKGgGR7+2piqhlDneaAdLAmgIR0CkacqIBRyfdX2UKGgGR7+2j+Jgssg/aAdLAmgIR0CkagrThHbzdX2UKGgGR7/dQN0/4ZdfaAdLBGgIR0CkaoV+7UXpdX2UKGgGR7/SSAYpDu0DaAdLA2gIR0CkadklE7W/dX2UKGgGR7/iHOjZcs19aAdLCGgIR0CkalAy/KyOdX2UKGgGR7/QRKpT/ACXaAdLA2gIR0Ckahbv5P/JdX2UKGgGR7/KpsoDxLCfaAdLA2gIR0CkaedZJTVEdX2UKGgGR7/Y6nR9gF5faAdLBGgIR0Ckapg3kxREdX2UKGgGR7/UJbMX7+DOaAdLA2gIR0Ckal6rWAf/dX2UKGgGR7/Rfq5byH2zaAdLA2gIR0CkaiVawD/3dX2UKGgGR7/Fpxm03Ov/aAdLAmgIR0Ckamditq59dX2UKGgGR7+z4EfT1CgLaAdLAmgIR0Ckai4wZflZdX2UKGgGR7/NX0XgtOEeaAdLA2gIR0CkafTmfXf7dX2UKGgGR7/FGiHqNZNgaAdLA2gIR0CkaqWX9itrdX2UKGgGR7/AEbHZK3/haAdLAmgIR0Ckaf/aHsTndX2UKGgGR7/EIa99MK1HaAdLAmgIR0CkarBi1AqvdX2UKGgGR7/O2UjcEeQuaAdLA2gIR0CkanbxVhkRdX2UKGgGR7/MbXHzYmLMaAdLA2gIR0Ckaj3We6I4dX2UKGgGR7+0IfKZDzAfaAdLAmgIR0Ckarh5ooNNdX2UKGgGR7/AGJvYODraaAdLAmgIR0CkakWPkq+bdX2UKGgGR7/Rc4YJmdy1aAdLA2gIR0CkagwarFOxdX2UKGgGR7+loJzDGcWkaAdLAWgIR0Ckag/+0gKXdX2UKGgGR7++r92ovSMMaAdLAmgIR0CkasMXSBsidX2UKGgGR7/WqFAVwgkkaAdLBGgIR0Ckaom3vx6OdX2UKGgGR7+mgDifg75maAdLAWgIR0CkahbXHzYmdX2UKGgGR7/TNGEwnH/+aAdLA2gIR0CkalRJEpiJdX2UKGgGR7+l2s7uDzy0aAdLAWgIR0CkahrKFIuodX2UKGgGR7++h37k4m1IaAdLAmgIR0CkapHJtBOYdX2UKGgGR7/RWnCO3lS1aAdLBGgIR0CkatLzoUzsdX2UKGgGR7/Wva11GLDRaAdLBGgIR0Ckamb79AHFdX2UKGgGR7/V0waisXBQaAdLBGgIR0Ckai2D6FdtdX2UKGgGR7+98MNMGorGaAdLAmgIR0Ckat4iX6ZZdX2UKGgGR7/Xe3hGYrrgaAdLBGgIR0CkaqSnDR+jdX2UKGgGR7/MHY6GQCCBaAdLA2gIR0CkanOFQEZBdX2UKGgGR7/NSF49ovi+aAdLA2gIR0CkautMfzSUdX2UKGgGR7/Smois4ku6aAdLA2gIR0CkarHPVurIdX2UKGgGR7/YlZHNHH3laAdLBGgIR0Ckaj8a4tpVdX2UKGgGR7/Jlp48lolEaAdLA2gIR0CkaoLhisnzdX2UKGgGR7/QG9Htnf2saAdLA2gIR0CkasCB5HEudX2UKGgGR7/WkUbkwN9ZaAdLBGgIR0Ckav5GBnSOdX2UKGgGR7/ZySFGoaUBaAdLBGgIR0CkalGNzbN9dX2UKGgGR7/MTtb9qDbraAdLA2gIR0Ckao9ELH+7dX2UKGgGR7/PGgBcRlH0aAdLA2gIR0Ckas881XNkdX2UKGgGR7/CHbAUL2HtaAdLAmgIR0CkalxzJZGKdX2UKGgGR7/KiEg4ffXPaAdLA2gIR0Ckaw0gbIcSdX2UKGgGR7/CBq9Gqgh9aAdLAmgIR0CkapqKpDNRdX2UKGgGR7+N9lVcUucuaAdLAWgIR0CkamEZJkGzdX2UKGgGR79eDFqBVdX1aAdLAWgIR0CkamXzMA3ldX2UKGgGR7/Jt0FKTSssaAdLA2gIR0Ckat0Re1KHdX2UKGgGR7/JZDiOvMbFaAdLA2gIR0CkaxrRrrPddX2UKGgGR7/MTeO4oZydaAdLA2gIR0CkaqhrnDBNdX2UKGgGR7++hIvrWy1NaAdLAmgIR0Ckaugy2x6fdX2UKGgGR7/RchTwUg0TaAdLA2gIR0CkanVFYuCgdX2UKGgGR7+nGbTc6/7BaAdLAWgIR0CkankdNnGsdX2UKGgGR7/Qrq+rU9ZBaAdLA2gIR0CkaynNorWidX2UKGgGR7/BTmW+oLofaAdLAmgIR0CkavBUBGQTdX2UKGgGR7/YkDp1RtP6aAdLBGgIR0CkarrPMSsbdX2UKGgGR7/Di6QNkOI7aAdLAmgIR0CkavgdGRV7dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (690 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.14053227957338094, "std_reward": 0.0673237683130211, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-09T04:31:31.679212"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b0525396d22f9cd043072de4b657a29e2bc7b39fa108434bafa07ab53e38e32
3
+ size 2623