samzoozi commited on
Commit
b37e6fb
·
1 Parent(s): ba19c70

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 263.35 +/- 20.74
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa04b4b6550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa04b4b65e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa04b4b6670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa04b4b6700>", "_build": "<function ActorCriticPolicy._build at 0x7fa04b4b6790>", "forward": "<function ActorCriticPolicy.forward at 0x7fa04b4b6820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa04b4b68b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa04b4b6940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa04b4b69d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa04b4b6a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa04b4b6af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa04b4b6b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa04b4bf580>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679766617187493460, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA3+uD3U58A9R1KdvX5QWb4SIuk8hxdDvQAAAAAAAAAAQKmSPfrxrj8gZis/2kWhvgWI3DtWf0o+AAAAAAAAAABzwWg+T9w1Px4cSj1VXPC+RwoIPoAyzb0AAAAAAAAAAIDqIz6BdJM/WlIiPoPp0b4ubQI+cMhKvQAAAAAAAAAA5gU8PeFomrqONru3Bv+gsoVEubqgCtg2AACAPwAAgD/NjP47Zw6zP+ZIRD5/yzG+OQkAu5FmIzsAAAAAAAAAAJrd5rxsuwI+0mNYu8IKgr57AKg95XqGvQAAAAAAAAAAACcoPuvAyz5j1RC+0GGFvptMPz1KkYI5AAAAAAAAAAAAfuK9JO9zPFzdLzxs/Ta+rRx4u83qyr0AAAAAAAAAAAATMb6t6wU/Eu4kPvqDo74/2k+86S+qPQAAAAAAAAAAAOWuvTEz2z2i4J69p5Kivm2Pc72OXQA9AAAAAAAAAACTCgI+ARkTP27KQb4i7KC+7FaVvLDdfb0AAAAAAAAAAIAabj2UGag/ASgAP7y+875oa+A8RkhYPgAAAAAAAAAATWEyvSEkuD1WaM48//yBvjLpcjv4zjs8AAAAAAAAAAAOWji/y0ylvvFNhbcnyx62V3FXPghr3zYAAIA/AACAP2YRrr1RolY+sqUYPs/gfb4uo5g9U691PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI48eYu5Z4UECUhpRSlIwBbJRLuYwBdJRHQJU3IFqzqr11fZQoaAZoCWgPQwh+N92yw7NxQJSGlFKUaBVNQgFoFkdAlTdgZXMhYHV9lChoBmgJaA9DCJ2gTQ5fS3BAlIaUUpRoFU1dAWgWR0CVODyrxRVIdX2UKGgGaAloD0MIui2RC468cUCUhpRSlGgVTUsBaBZHQJU4nl5nlGR1fZQoaAZoCWgPQwjmApfHWhpxQJSGlFKUaBVNBwFoFkdAlTir4N7SiXV9lChoBmgJaA9DCDttjQgGMnBAlIaUUpRoFU1AAWgWR0CVOcJFspG4dX2UKGgGaAloD0MISmHe44xbckCUhpRSlGgVTRYBaBZHQJU5yXdCVr11fZQoaAZoCWgPQwhY4gFl021uQJSGlFKUaBVNRAFoFkdAlTsZL7Gec3V9lChoBmgJaA9DCC4aMh4ltHBAlIaUUpRoFU0CAWgWR0CVPHsTWXkYdX2UKGgGaAloD0MIXhH8b6XlcUCUhpRSlGgVTTUBaBZHQJU84jt5UtJ1fZQoaAZoCWgPQwh/ox03vLlxQJSGlFKUaBVNDwFoFkdAlT0DyjHn2nV9lChoBmgJaA9DCDUIc7sXvm1AlIaUUpRoFU0IAWgWR0CVPUl1KXfJdX2UKGgGaAloD0MI2IFzRhSUckCUhpRSlGgVTToBaBZHQJU9bkfcN6R1fZQoaAZoCWgPQwgL7gc88OZwQJSGlFKUaBVNGwFoFkdAlT4liBoVVXV9lChoBmgJaA9DCEnb+BOVi3FAlIaUUpRoFU0yAWgWR0CVP3u5jH4odX2UKGgGaAloD0MIjNtoAC/ycECUhpRSlGgVTSgBaBZHQJVALN5dGAl1fZQoaAZoCWgPQwhfKcsQR7VwQJSGlFKUaBVNBgFoFkdAlUCZB9kSVXV9lChoBmgJaA9DCOrNqPlqS3FAlIaUUpRoFU0QAWgWR0CVQOx59mYjdX2UKGgGaAloD0MIiulCrP5bcECUhpRSlGgVTasBaBZHQJVA6q//Nqx1fZQoaAZoCWgPQwjPvvIgvSNyQJSGlFKUaBVNTAFoFkdAlUE+hTOxB3V9lChoBmgJaA9DCPLSTWIQs3JAlIaUUpRoFU0eAWgWR0CVQscXm/34dX2UKGgGaAloD0MISuza3m6vcECUhpRSlGgVTWABaBZHQJVDDXe3x4J1fZQoaAZoCWgPQwgmNh/XRh9xQJSGlFKUaBVNQwFoFkdAlUPZ1V5rxnV9lChoBmgJaA9DCIuJzce1D3FAlIaUUpRoFU0UAWgWR0CVQ+C7K7qZdX2UKGgGaAloD0MIkE3yIz5fcUCUhpRSlGgVTRYBaBZHQJVFNhMJyAB1fZQoaAZoCWgPQwh1H4DUJiVvQJSGlFKUaBVNGwFoFkdAlUXGRFI/aHV9lChoBmgJaA9DCJFgqpk1MnFAlIaUUpRoFU0dAWgWR0CVRfNWEK3NdX2UKGgGaAloD0MIpRMJphq5cUCUhpRSlGgVS/toFkdAlUYTIBBAwHV9lChoBmgJaA9DCENyMnGrrm9AlIaUUpRoFU0qAWgWR0CVRoeOGTLXdX2UKGgGaAloD0MIJXZtb7eoSUCUhpRSlGgVS8hoFkdAlUcueSSvDHV9lChoBmgJaA9DCA1S8BQy7HBAlIaUUpRoFU0MAWgWR0CVR8AU+LWJdX2UKGgGaAloD0MI8DSZ8XYmcUCUhpRSlGgVTVMBaBZHQJVH0BQvYe11fZQoaAZoCWgPQwjUK2UZ4h5xQJSGlFKUaBVL/GgWR0CVSFPO6d1/dX2UKGgGaAloD0MIZ4ALsmWucUCUhpRSlGgVS/1oFkdAlUhfszEaVHV9lChoBmgJaA9DCE5jey3ocG9AlIaUUpRoFU0dAWgWR0CVSK6F/QSjdX2UKGgGaAloD0MIp6/na9aIcUCUhpRSlGgVTSoBaBZHQJVJTPRiPQx1fZQoaAZoCWgPQwgZG7rZ34FxQJSGlFKUaBVL/GgWR0CVSdGxD9fkdX2UKGgGaAloD0MIXDl7ZzT1a0CUhpRSlGgVTQABaBZHQJVK/FyaNMp1fZQoaAZoCWgPQwjfwORGEf9wQJSGlFKUaBVNLQFoFkdAlUtxVZLZjHV9lChoBmgJaA9DCLWIKCavhnBAlIaUUpRoFU0UAWgWR0CVS4IToMa1dX2UKGgGaAloD0MIQkKULyikcUCUhpRSlGgVTRQBaBZHQJVM0jY7JXB1fZQoaAZoCWgPQwhAFw0ZTxVyQJSGlFKUaBVNBwFoFkdAlUzv1DjR2XV9lChoBmgJaA9DCI22Kons8W5AlIaUUpRoFU0JAWgWR0CVTVwudwvQdX2UKGgGaAloD0MIBvUtc3pDcUCUhpRSlGgVS/xoFkdAlU2SSeRPoHV9lChoBmgJaA9DCJKTiVsFj25AlIaUUpRoFU0yAWgWR0CVZw0ALiMpdX2UKGgGaAloD0MI96sA322dcECUhpRSlGgVTREBaBZHQJVnX0L+glF1fZQoaAZoCWgPQwilngWhvBRvQJSGlFKUaBVNKAFoFkdAlWi4rFwT/XV9lChoBmgJaA9DCFOynIRSbWxAlIaUUpRoFU0pAWgWR0CVaNSntOVPdX2UKGgGaAloD0MIPrK5al66cUCUhpRSlGgVTRYBaBZHQJVo3f3vhIh1fZQoaAZoCWgPQwi5bd+jft9xQJSGlFKUaBVNHgFoFkdAlWl+Wv8qF3V9lChoBmgJaA9DCKndrwL8fWxAlIaUUpRoFU05AWgWR0CVafC4z7/GdX2UKGgGaAloD0MIwOeHEYLUcUCUhpRSlGgVTTgBaBZHQJVrDQHAymB1fZQoaAZoCWgPQwiT4A1pFGlwQJSGlFKUaBVL/WgWR0CVaxbiqABldX2UKGgGaAloD0MI7NlzmZozb0CUhpRSlGgVTU8BaBZHQJVsW/Firkt1fZQoaAZoCWgPQwggnE8da6hwQJSGlFKUaBVNAwFoFkdAlW2QfEGZ/nV9lChoBmgJaA9DCPF/R1So5XFAlIaUUpRoFU0PAWgWR0CVbdZ7XxvvdX2UKGgGaAloD0MIT0ATYQPzcUCUhpRSlGgVTUsBaBZHQJVuOD6Fds11fZQoaAZoCWgPQwiRDg9h/F9xQJSGlFKUaBVNXAFoFkdAlW6t7a7EpHV9lChoBmgJaA9DCFH6Qsg5r3BAlIaUUpRoFU0pAWgWR0CVbya9K28adX2UKGgGaAloD0MINum2RC6hb0CUhpRSlGgVS/poFkdAlW8uRxLkCHV9lChoBmgJaA9DCJn091J4p29AlIaUUpRoFU0IAWgWR0CVb0NnXd0rdX2UKGgGaAloD0MIqFSJsrdjcECUhpRSlGgVTSsBaBZHQJVvT7sOXmh1fZQoaAZoCWgPQwjBjClY4y9QQJSGlFKUaBVL2WgWR0CVcAru6VdHdX2UKGgGaAloD0MIkzfAzHcebECUhpRSlGgVTQsBaBZHQJVwoOtnwod1fZQoaAZoCWgPQwiVYdwNIqtxQJSGlFKUaBVNIAFoFkdAlXFW2oegc3V9lChoBmgJaA9DCPiL2ZKVX3FAlIaUUpRoFU0YAWgWR0CVcj4DcM3IdX2UKGgGaAloD0MILV+X4T/tbkCUhpRSlGgVS/poFkdAlXJ29L6DXnV9lChoBmgJaA9DCFyrPeyFdm9AlIaUUpRoFU0gAWgWR0CVc53/xUeddX2UKGgGaAloD0MIlUiil5E9cUCUhpRSlGgVTR8BaBZHQJV2n0PH1e11fZQoaAZoCWgPQwjAz7hwoF9uQJSGlFKUaBVNDQFoFkdAlXauXiR4hXV9lChoBmgJaA9DCM0C7Q4ptiRAlIaUUpRoFUvJaBZHQJV2tSl3yI51fZQoaAZoCWgPQwhevB+3n3NwQJSGlFKUaBVNGgFoFkdAlXa/1QIldHV9lChoBmgJaA9DCIlA9Q8iM3BAlIaUUpRoFU1JAWgWR0CVdtaBqbjMdX2UKGgGaAloD0MIodrgRDQlckCUhpRSlGgVTQQBaBZHQJV25kWhysF1fZQoaAZoCWgPQwgIPDCAcKFyQJSGlFKUaBVL+GgWR0CVdx6kqMFVdX2UKGgGaAloD0MIe9rhr4mNcUCUhpRSlGgVS/1oFkdAlXcu4Cp3o3V9lChoBmgJaA9DCKirOxZbsXBAlIaUUpRoFU0HAWgWR0CVd5RQrMC+dX2UKGgGaAloD0MI4Qz+frEybUCUhpRSlGgVTQ8BaBZHQJV3oUbkwN91fZQoaAZoCWgPQwhJ9Z1flGdQQJSGlFKUaBVL2mgWR0CVeHekHlfadX2UKGgGaAloD0MIwtmtZbLUbECUhpRSlGgVS/ZoFkdAlXiKLS/j83V9lChoBmgJaA9DCCxJnuv7HG5AlIaUUpRoFUv8aBZHQJV6UP8Q7Ld1fZQoaAZoCWgPQwic3sX7cZxxQJSGlFKUaBVNNQFoFkdAlXvZVbRne3V9lChoBmgJaA9DCDz2s1jKvHFAlIaUUpRoFUv3aBZHQJV99wcYIjZ1fZQoaAZoCWgPQwi1T8djxpVwQJSGlFKUaBVL+GgWR0CVfkrt3OfNdX2UKGgGaAloD0MITwZHyattcUCUhpRSlGgVS/5oFkdAlX50Q04zanV9lChoBmgJaA9DCPm7d9RYGHBAlIaUUpRoFU1SAWgWR0CVfn45Lh73dX2UKGgGaAloD0MI+BdBY2alcUCUhpRSlGgVTRMBaBZHQJV/IaFVT751fZQoaAZoCWgPQwgp6PaSxgFuQJSGlFKUaBVNFQFoFkdAlYBDMNc4YXV9lChoBmgJaA9DCB40u+7t0nBAlIaUUpRoFU05AWgWR0CVgH29cry2dX2UKGgGaAloD0MIVFVoINaPckCUhpRSlGgVTUEBaBZHQJWAvtShrWR1fZQoaAZoCWgPQwgv3o/bLwVwQJSGlFKUaBVNBAFoFkdAlYD+xSpBHHV9lChoBmgJaA9DCGagMv59yW9AlIaUUpRoFU1FAWgWR0CVgUhNucc3dX2UKGgGaAloD0MIWyIXnEHhcUCUhpRSlGgVTU8BaBZHQJWBnuw5eZ51fZQoaAZoCWgPQwjDRIMUvCBwQJSGlFKUaBVNSAFoFkdAlYLkiD/VAnV9lChoBmgJaA9DCNYBEHd17HBAlIaUUpRoFU1rAWgWR0CVguyIYWLxdX2UKGgGaAloD0MI8iIT8Ku2cUCUhpRSlGgVTSABaBZHQJWDpZpztC11fZQoaAZoCWgPQwjmIOhoVblwQJSGlFKUaBVL/GgWR0CVhAeCCjDbdX2UKGgGaAloD0MI2QdZFgxXcUCUhpRSlGgVS/NoFkdAlYVpAhStNnV9lChoBmgJaA9DCN9Q+GwdFE5AlIaUUpRoFUvoaBZHQJWFdxeb/fh1fZQoaAZoCWgPQwj92Y8UEURxQJSGlFKUaBVL8mgWR0CVhaOFQEZBdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo_LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5bb4de6a7b5f5a390e040015f36e28a54466dffca65dcfa7ad99eaef0b214c2
3
+ size 147397
ppo_LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo_LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa04b4b6550>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa04b4b65e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa04b4b6670>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa04b4b6700>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa04b4b6790>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa04b4b6820>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa04b4b68b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa04b4b6940>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa04b4b69d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa04b4b6a60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa04b4b6af0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa04b4b6b80>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fa04b4bf580>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1679766617187493460,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA3+uD3U58A9R1KdvX5QWb4SIuk8hxdDvQAAAAAAAAAAQKmSPfrxrj8gZis/2kWhvgWI3DtWf0o+AAAAAAAAAABzwWg+T9w1Px4cSj1VXPC+RwoIPoAyzb0AAAAAAAAAAIDqIz6BdJM/WlIiPoPp0b4ubQI+cMhKvQAAAAAAAAAA5gU8PeFomrqONru3Bv+gsoVEubqgCtg2AACAPwAAgD/NjP47Zw6zP+ZIRD5/yzG+OQkAu5FmIzsAAAAAAAAAAJrd5rxsuwI+0mNYu8IKgr57AKg95XqGvQAAAAAAAAAAACcoPuvAyz5j1RC+0GGFvptMPz1KkYI5AAAAAAAAAAAAfuK9JO9zPFzdLzxs/Ta+rRx4u83qyr0AAAAAAAAAAAATMb6t6wU/Eu4kPvqDo74/2k+86S+qPQAAAAAAAAAAAOWuvTEz2z2i4J69p5Kivm2Pc72OXQA9AAAAAAAAAACTCgI+ARkTP27KQb4i7KC+7FaVvLDdfb0AAAAAAAAAAIAabj2UGag/ASgAP7y+875oa+A8RkhYPgAAAAAAAAAATWEyvSEkuD1WaM48//yBvjLpcjv4zjs8AAAAAAAAAAAOWji/y0ylvvFNhbcnyx62V3FXPghr3zYAAIA/AACAP2YRrr1RolY+sqUYPs/gfb4uo5g9U691PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVaRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI48eYu5Z4UECUhpRSlIwBbJRLuYwBdJRHQJU3IFqzqr11fZQoaAZoCWgPQwh+N92yw7NxQJSGlFKUaBVNQgFoFkdAlTdgZXMhYHV9lChoBmgJaA9DCJ2gTQ5fS3BAlIaUUpRoFU1dAWgWR0CVODyrxRVIdX2UKGgGaAloD0MIui2RC468cUCUhpRSlGgVTUsBaBZHQJU4nl5nlGR1fZQoaAZoCWgPQwjmApfHWhpxQJSGlFKUaBVNBwFoFkdAlTir4N7SiXV9lChoBmgJaA9DCDttjQgGMnBAlIaUUpRoFU1AAWgWR0CVOcJFspG4dX2UKGgGaAloD0MISmHe44xbckCUhpRSlGgVTRYBaBZHQJU5yXdCVr11fZQoaAZoCWgPQwhY4gFl021uQJSGlFKUaBVNRAFoFkdAlTsZL7Gec3V9lChoBmgJaA9DCC4aMh4ltHBAlIaUUpRoFU0CAWgWR0CVPHsTWXkYdX2UKGgGaAloD0MIXhH8b6XlcUCUhpRSlGgVTTUBaBZHQJU84jt5UtJ1fZQoaAZoCWgPQwh/ox03vLlxQJSGlFKUaBVNDwFoFkdAlT0DyjHn2nV9lChoBmgJaA9DCDUIc7sXvm1AlIaUUpRoFU0IAWgWR0CVPUl1KXfJdX2UKGgGaAloD0MI2IFzRhSUckCUhpRSlGgVTToBaBZHQJU9bkfcN6R1fZQoaAZoCWgPQwgL7gc88OZwQJSGlFKUaBVNGwFoFkdAlT4liBoVVXV9lChoBmgJaA9DCEnb+BOVi3FAlIaUUpRoFU0yAWgWR0CVP3u5jH4odX2UKGgGaAloD0MIjNtoAC/ycECUhpRSlGgVTSgBaBZHQJVALN5dGAl1fZQoaAZoCWgPQwhfKcsQR7VwQJSGlFKUaBVNBgFoFkdAlUCZB9kSVXV9lChoBmgJaA9DCOrNqPlqS3FAlIaUUpRoFU0QAWgWR0CVQOx59mYjdX2UKGgGaAloD0MIiulCrP5bcECUhpRSlGgVTasBaBZHQJVA6q//Nqx1fZQoaAZoCWgPQwjPvvIgvSNyQJSGlFKUaBVNTAFoFkdAlUE+hTOxB3V9lChoBmgJaA9DCPLSTWIQs3JAlIaUUpRoFU0eAWgWR0CVQscXm/34dX2UKGgGaAloD0MISuza3m6vcECUhpRSlGgVTWABaBZHQJVDDXe3x4J1fZQoaAZoCWgPQwgmNh/XRh9xQJSGlFKUaBVNQwFoFkdAlUPZ1V5rxnV9lChoBmgJaA9DCIuJzce1D3FAlIaUUpRoFU0UAWgWR0CVQ+C7K7qZdX2UKGgGaAloD0MIkE3yIz5fcUCUhpRSlGgVTRYBaBZHQJVFNhMJyAB1fZQoaAZoCWgPQwh1H4DUJiVvQJSGlFKUaBVNGwFoFkdAlUXGRFI/aHV9lChoBmgJaA9DCJFgqpk1MnFAlIaUUpRoFU0dAWgWR0CVRfNWEK3NdX2UKGgGaAloD0MIpRMJphq5cUCUhpRSlGgVS/toFkdAlUYTIBBAwHV9lChoBmgJaA9DCENyMnGrrm9AlIaUUpRoFU0qAWgWR0CVRoeOGTLXdX2UKGgGaAloD0MIJXZtb7eoSUCUhpRSlGgVS8hoFkdAlUcueSSvDHV9lChoBmgJaA9DCA1S8BQy7HBAlIaUUpRoFU0MAWgWR0CVR8AU+LWJdX2UKGgGaAloD0MI8DSZ8XYmcUCUhpRSlGgVTVMBaBZHQJVH0BQvYe11fZQoaAZoCWgPQwjUK2UZ4h5xQJSGlFKUaBVL/GgWR0CVSFPO6d1/dX2UKGgGaAloD0MIZ4ALsmWucUCUhpRSlGgVS/1oFkdAlUhfszEaVHV9lChoBmgJaA9DCE5jey3ocG9AlIaUUpRoFU0dAWgWR0CVSK6F/QSjdX2UKGgGaAloD0MIp6/na9aIcUCUhpRSlGgVTSoBaBZHQJVJTPRiPQx1fZQoaAZoCWgPQwgZG7rZ34FxQJSGlFKUaBVL/GgWR0CVSdGxD9fkdX2UKGgGaAloD0MIXDl7ZzT1a0CUhpRSlGgVTQABaBZHQJVK/FyaNMp1fZQoaAZoCWgPQwjfwORGEf9wQJSGlFKUaBVNLQFoFkdAlUtxVZLZjHV9lChoBmgJaA9DCLWIKCavhnBAlIaUUpRoFU0UAWgWR0CVS4IToMa1dX2UKGgGaAloD0MIQkKULyikcUCUhpRSlGgVTRQBaBZHQJVM0jY7JXB1fZQoaAZoCWgPQwhAFw0ZTxVyQJSGlFKUaBVNBwFoFkdAlUzv1DjR2XV9lChoBmgJaA9DCI22Kons8W5AlIaUUpRoFU0JAWgWR0CVTVwudwvQdX2UKGgGaAloD0MIBvUtc3pDcUCUhpRSlGgVS/xoFkdAlU2SSeRPoHV9lChoBmgJaA9DCJKTiVsFj25AlIaUUpRoFU0yAWgWR0CVZw0ALiMpdX2UKGgGaAloD0MI96sA322dcECUhpRSlGgVTREBaBZHQJVnX0L+glF1fZQoaAZoCWgPQwilngWhvBRvQJSGlFKUaBVNKAFoFkdAlWi4rFwT/XV9lChoBmgJaA9DCFOynIRSbWxAlIaUUpRoFU0pAWgWR0CVaNSntOVPdX2UKGgGaAloD0MIPrK5al66cUCUhpRSlGgVTRYBaBZHQJVo3f3vhIh1fZQoaAZoCWgPQwi5bd+jft9xQJSGlFKUaBVNHgFoFkdAlWl+Wv8qF3V9lChoBmgJaA9DCKndrwL8fWxAlIaUUpRoFU05AWgWR0CVafC4z7/GdX2UKGgGaAloD0MIwOeHEYLUcUCUhpRSlGgVTTgBaBZHQJVrDQHAymB1fZQoaAZoCWgPQwiT4A1pFGlwQJSGlFKUaBVL/WgWR0CVaxbiqABldX2UKGgGaAloD0MI7NlzmZozb0CUhpRSlGgVTU8BaBZHQJVsW/Firkt1fZQoaAZoCWgPQwggnE8da6hwQJSGlFKUaBVNAwFoFkdAlW2QfEGZ/nV9lChoBmgJaA9DCPF/R1So5XFAlIaUUpRoFU0PAWgWR0CVbdZ7XxvvdX2UKGgGaAloD0MIT0ATYQPzcUCUhpRSlGgVTUsBaBZHQJVuOD6Fds11fZQoaAZoCWgPQwiRDg9h/F9xQJSGlFKUaBVNXAFoFkdAlW6t7a7EpHV9lChoBmgJaA9DCFH6Qsg5r3BAlIaUUpRoFU0pAWgWR0CVbya9K28adX2UKGgGaAloD0MINum2RC6hb0CUhpRSlGgVS/poFkdAlW8uRxLkCHV9lChoBmgJaA9DCJn091J4p29AlIaUUpRoFU0IAWgWR0CVb0NnXd0rdX2UKGgGaAloD0MIqFSJsrdjcECUhpRSlGgVTSsBaBZHQJVvT7sOXmh1fZQoaAZoCWgPQwjBjClY4y9QQJSGlFKUaBVL2WgWR0CVcAru6VdHdX2UKGgGaAloD0MIkzfAzHcebECUhpRSlGgVTQsBaBZHQJVwoOtnwod1fZQoaAZoCWgPQwiVYdwNIqtxQJSGlFKUaBVNIAFoFkdAlXFW2oegc3V9lChoBmgJaA9DCPiL2ZKVX3FAlIaUUpRoFU0YAWgWR0CVcj4DcM3IdX2UKGgGaAloD0MILV+X4T/tbkCUhpRSlGgVS/poFkdAlXJ29L6DXnV9lChoBmgJaA9DCFyrPeyFdm9AlIaUUpRoFU0gAWgWR0CVc53/xUeddX2UKGgGaAloD0MIlUiil5E9cUCUhpRSlGgVTR8BaBZHQJV2n0PH1e11fZQoaAZoCWgPQwjAz7hwoF9uQJSGlFKUaBVNDQFoFkdAlXauXiR4hXV9lChoBmgJaA9DCM0C7Q4ptiRAlIaUUpRoFUvJaBZHQJV2tSl3yI51fZQoaAZoCWgPQwhevB+3n3NwQJSGlFKUaBVNGgFoFkdAlXa/1QIldHV9lChoBmgJaA9DCIlA9Q8iM3BAlIaUUpRoFU1JAWgWR0CVdtaBqbjMdX2UKGgGaAloD0MIodrgRDQlckCUhpRSlGgVTQQBaBZHQJV25kWhysF1fZQoaAZoCWgPQwgIPDCAcKFyQJSGlFKUaBVL+GgWR0CVdx6kqMFVdX2UKGgGaAloD0MIe9rhr4mNcUCUhpRSlGgVS/1oFkdAlXcu4Cp3o3V9lChoBmgJaA9DCKirOxZbsXBAlIaUUpRoFU0HAWgWR0CVd5RQrMC+dX2UKGgGaAloD0MI4Qz+frEybUCUhpRSlGgVTQ8BaBZHQJV3oUbkwN91fZQoaAZoCWgPQwhJ9Z1flGdQQJSGlFKUaBVL2mgWR0CVeHekHlfadX2UKGgGaAloD0MIwtmtZbLUbECUhpRSlGgVS/ZoFkdAlXiKLS/j83V9lChoBmgJaA9DCCxJnuv7HG5AlIaUUpRoFUv8aBZHQJV6UP8Q7Ld1fZQoaAZoCWgPQwic3sX7cZxxQJSGlFKUaBVNNQFoFkdAlXvZVbRne3V9lChoBmgJaA9DCDz2s1jKvHFAlIaUUpRoFUv3aBZHQJV99wcYIjZ1fZQoaAZoCWgPQwi1T8djxpVwQJSGlFKUaBVL+GgWR0CVfkrt3OfNdX2UKGgGaAloD0MITwZHyattcUCUhpRSlGgVS/5oFkdAlX50Q04zanV9lChoBmgJaA9DCPm7d9RYGHBAlIaUUpRoFU1SAWgWR0CVfn45Lh73dX2UKGgGaAloD0MI+BdBY2alcUCUhpRSlGgVTRMBaBZHQJV/IaFVT751fZQoaAZoCWgPQwgp6PaSxgFuQJSGlFKUaBVNFQFoFkdAlYBDMNc4YXV9lChoBmgJaA9DCB40u+7t0nBAlIaUUpRoFU05AWgWR0CVgH29cry2dX2UKGgGaAloD0MIVFVoINaPckCUhpRSlGgVTUEBaBZHQJWAvtShrWR1fZQoaAZoCWgPQwgv3o/bLwVwQJSGlFKUaBVNBAFoFkdAlYD+xSpBHHV9lChoBmgJaA9DCGagMv59yW9AlIaUUpRoFU1FAWgWR0CVgUhNucc3dX2UKGgGaAloD0MIWyIXnEHhcUCUhpRSlGgVTU8BaBZHQJWBnuw5eZ51fZQoaAZoCWgPQwjDRIMUvCBwQJSGlFKUaBVNSAFoFkdAlYLkiD/VAnV9lChoBmgJaA9DCNYBEHd17HBAlIaUUpRoFU1rAWgWR0CVguyIYWLxdX2UKGgGaAloD0MI8iIT8Ku2cUCUhpRSlGgVTSABaBZHQJWDpZpztC11fZQoaAZoCWgPQwjmIOhoVblwQJSGlFKUaBVL/GgWR0CVhAeCCjDbdX2UKGgGaAloD0MI2QdZFgxXcUCUhpRSlGgVS/NoFkdAlYVpAhStNnV9lChoBmgJaA9DCN9Q+GwdFE5AlIaUUpRoFUvoaBZHQJWFdxeb/fh1fZQoaAZoCWgPQwj92Y8UEURxQJSGlFKUaBVL8mgWR0CVhaOFQEZBdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo_LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:615a0057aa04e562281228e4809126c88dce7fee7ef5ce0a73acd842980ba238
3
+ size 87929
ppo_LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1d7d661fe997554a98deb4d6c1d25271a37f247cf20bf62fd3c42f54c229d7d
3
+ size 43393
ppo_LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (238 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 263.34909003970245, "std_reward": 20.73505729587039, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-25T18:26:15.700301"}