File size: 14,548 Bytes
e687bf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import logging
from dataclasses import dataclass
from typing import Dict, List, Optional, Union, Set

import torch
import numpy as np
import datasets
from datasets import load_dataset, Dataset, IterableDataset, interleave_datasets, concatenate_datasets
from transformers import AutoFeatureExtractor, AutoTokenizer
from tqdm import tqdm

from accelerate import Accelerator


@dataclass
class DataCollatorEncodecWithPadding:
    """
    Data collator that will dynamically pad the inputs received to the longest sequence in the batch or
    to `max_length` if `max_length` is set and `padding=max_length`.
    """

    feature_extractor: AutoFeatureExtractor
    audio_column_name: str
    feature_extractor_input_name: Optional[str] = "input_values"
    max_length: Optional[int] = None
    padding: Optional[str] = "longest"

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods
        audios = [feature[self.audio_column_name]["array"] for feature in features]
        len_audio = [len(audio) for audio in audios]

        # since resampling has already been performed in the 'load_multiple_datasets' function,
        # a fixed sampling_rate(44100hz) is passed to the feature_extractor.
        sampling_rate = self.feature_extractor.sampling_rate
        batch = self.feature_extractor(
            audios, sampling_rate=sampling_rate, return_tensors="pt", padding=self.padding, max_length=self.max_length
        )
        batch["len_audio"] = torch.tensor(len_audio).unsqueeze(1)
        return batch


@dataclass
class DataCollatorParlerTTSWithPadding:
    """
    Data collator that will dynamically pad the inputs received.
    Args:
        prompt_tokenizer (:class:`~transformers.AutoTokenizer`)
            The prompt_tokenizer used for proccessing the data.
        description_tokenizer (:class:`~transformers.AutoTokenizer`)
            The description_tokenizer used for proccessing the data.
        padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
            Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
            among:
            * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
              sequence if provided).
            * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
              maximum acceptable input length for the model if that argument is not provided.
            * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
              different lengths).
        pad_to_multiple_of (:obj:`int`, `optional`):
            If set will pad the sequence to a multiple of the provided value.
            This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
            7.5 (Volta).
    """

    prompt_tokenizer: AutoTokenizer
    description_tokenizer: AutoTokenizer
    padding: Union[bool, str] = "longest"
    pad_to_multiple_of: Optional[int] = None
    prompt_max_length: Optional[int] = None
    description_max_length: Optional[int] = None
    audio_max_length: Optional[int] = None

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods

        labels = [torch.tensor(feature["labels"]).transpose(0, 1) for feature in features]
        # (bsz, seq_len, num_codebooks)
        labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=-100)
        if self.audio_max_length is not None and self.padding == "max_length":
            labels = torch.nn.functional.pad(labels, pad=(0, 0, 0, max(self.audio_max_length - labels.shape[1], 0)))

        input_ids = [{"input_ids": feature["input_ids"]} for feature in features]

        input_ids = self.description_tokenizer.pad(
            input_ids,
            return_tensors="pt",
            padding=self.padding,
            pad_to_multiple_of=self.pad_to_multiple_of,
            max_length=self.description_max_length,
        )

        batch = {"labels": labels, **input_ids}

        if self.audio_max_length is not None and self.padding == "max_length":
            # if we do torch.compile, we need to also specify the attention_mask
            decoder_attention_mask = torch.ones(labels.shape[:2], dtype=input_ids["attention_mask"].dtype)
            batch["decoder_attention_mask"] = decoder_attention_mask

        prompt_input_ids = [{"input_ids": feature["prompt_input_ids"]} for feature in features]
        prompt_input_ids = self.prompt_tokenizer.pad(
            prompt_input_ids,
            return_tensors="pt",
            padding=self.padding,
            pad_to_multiple_of=self.pad_to_multiple_of,
            max_length=self.prompt_max_length,
        )

        batch["prompt_input_ids"] = prompt_input_ids["input_ids"]
        if "attention_mask" in prompt_input_ids:
            batch["prompt_attention_mask"] = prompt_input_ids["attention_mask"]

        return batch


def convert_dataset_str_to_list(
    dataset_names,
    dataset_config_names,
    metadata_dataset_names=None,
    splits=None,
    dataset_samples=None,
    default_split="train",
):
    if isinstance(dataset_names, str):
        dataset_names = dataset_names.split("+")
        dataset_config_names = dataset_config_names.split("+")
        splits = splits.split("+") if splits is not None else None
        dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None
        metadata_dataset_names = metadata_dataset_names.split("+") if metadata_dataset_names is not None else None

    # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
    if len(dataset_names) != len(dataset_config_names):
        raise ValueError(
            f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(dataset_config_names)} configs."
        )

    if splits is not None and len(splits) != len(dataset_names):
        raise ValueError(
            f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
        )

    if metadata_dataset_names is not None and len(metadata_dataset_names) != len(dataset_names):
        raise ValueError(
            f"Ensure one metadata dataset is passed for each dataset, got {len(dataset_names)} datasets and {len(metadata_dataset_names)} metadata datasets."
        )

    if dataset_samples is not None:
        if len(dataset_samples) != len(dataset_names):
            raise ValueError(
                f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
                f"{len(dataset_samples)} samples."
            )
        dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
    else:
        dataset_samples = [None] * len(dataset_names)

    splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]

    dataset_names_dict = []
    for i, ds_name in enumerate(dataset_names):
        dataset_names_dict.append(
            {
                "name": ds_name,
                "config": dataset_config_names[i],
                "split": splits[i],
                "metadata_dataset_name": metadata_dataset_names[i],
                "samples": dataset_samples[i],
            }
        )
    return dataset_names_dict


def load_multiple_datasets(
    accelerator: Accelerator,
    dataset_names: Union[List, str],
    dataset_config_names: Union[List, str],
    metadata_dataset_names: Optional[str] = None,
    splits: Optional[Union[List, str]] = None,
    label_column_names: Optional[List] = None,
    stopping_strategy: Optional[str] = "first_exhausted",
    dataset_samples: Optional[Union[List, np.array]] = None,
    streaming: Optional[bool] = False,
    seed: Optional[int] = None,
    id_column_name: Optional[str] = None,
    columns_to_keep: Optional[Set[str]] = None,
    prompt_column_name: Optional[str] = None,
    sampling_rate: Optional[int] = None,
    audio_column_name: Optional[str] = None,
    logger: Optional[logging.Logger] = None,
    **kwargs,
) -> Union[Dataset, IterableDataset]:
    dataset_names_dict = convert_dataset_str_to_list(
        dataset_names, dataset_config_names, metadata_dataset_names, splits, label_column_names, dataset_samples
    )

    if dataset_samples is not None:
        dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
        probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
    else:
        probabilities = None

    all_datasets = []
    # iterate over the datasets we want to interleave
    for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."):
        with accelerator.main_process_first():
            dataset = load_dataset(
                dataset_dict["name"],
                dataset_dict["config"],
                split=dataset_dict["split"],
                streaming=streaming,
                **kwargs,
            )
            dataset_features = dataset.features.keys()

            if sampling_rate is not None and audio_column_name is not None:
                # resample target audio
                dataset = dataset.cast_column(audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate))

            metadata_dataset_name = dataset_dict["metadata_dataset_name"]
            if metadata_dataset_name is not None:
                logger.info(
                    f'Merging {dataset_dict["name"]} - {dataset_dict["split"]} with {metadata_dataset_name} - {dataset_dict["split"]}'
                )
                metadata_dataset = load_dataset(
                    metadata_dataset_name,
                    dataset_dict["config"],
                    split=dataset_dict["split"],
                    streaming=streaming,
                    **kwargs,
                )

                # TODO(YL): I forgot to create unique ids for MLS english.
                # To iterate faster, I bypass the original id check and do another one. - Done once because assuming it won't change next time
                # if dataset_dict["name"] == "parler-tts/mls_eng_10k":
                #     def concat_ids(book_id, speaker_id, begin_time):
                #         return {"id": f"{book_id}_{speaker_id}_{str(begin_time).replace('.', '_')}"}
                #     dataset = dataset.map(concat_ids, input_columns=["book_id", "speaker_id", "begin_time"], num_proc=24)
                #     metadata_dataset = metadata_dataset.map(concat_ids, input_columns=["book_id", "speaker_id", "begin_time"], num_proc=24)
                #     metadata_dataset = metadata_dataset.rename_column(id_column_name, f"metadata_{id_column_name}")

                if dataset_dict["name"] != "parler-tts/mls_eng_10k":
                    if id_column_name is not None and id_column_name not in dataset.column_names:
                        raise ValueError(
                            f"id_column_name={id_column_name} but has not been found in the dataset columns"
                            f"- one of {', '.join(list(dataset.column_names))}."
                        )
                    if id_column_name is not None and id_column_name not in metadata_dataset.column_names:
                        raise ValueError(
                            f"id_column_name={id_column_name} but has not been found in the metadata dataset columns"
                            f"- one of {', '.join(list(metadata_dataset.column_names))}."
                        )
                    elif id_column_name is not None:
                        metadata_dataset = metadata_dataset.rename_column(id_column_name, f"metadata_{id_column_name}")

                metadata_columns_to_remove = set(metadata_dataset.column_names).intersection(set(dataset.column_names))

                if prompt_column_name is not None:
                    # We might have applied some transformations to the prompts (e.g  punctuation restoration)
                    # so we make sure to remove it from the original dataset
                    if prompt_column_name in dataset.column_names:
                        logger.info(
                            f"REMOVE {prompt_column_name} from dataset {dataset_dict['name']} - dataset_dict['split']"
                        )
                        dataset.remove_columns(prompt_column_name)

                metadata_columns_to_remove = set(metadata_dataset.column_names).intersection(set(dataset.column_names))
                metadata_dataset = metadata_dataset.remove_columns(metadata_columns_to_remove)

                dataset = concatenate_datasets([dataset, metadata_dataset], axis=1)

                if id_column_name is not None and dataset_dict["name"] != "parler-tts/mls_eng_10k":
                    if (
                        len(
                            dataset.filter(
                                lambda id1, id2: id1 != id2,
                                input_columns=[id_column_name, f"metadata_{id_column_name}"],
                            )
                        )
                        != 0
                    ):
                        raise ValueError(
                            f"Concatenate didn't work. Some ids don't correspond on dataset {dataset_dict['name']}"
                        )

                dataset_features = dataset.features.keys()

            if columns_to_keep is not None:
                dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
        all_datasets.append(dataset)

    if len(all_datasets) == 1:
        # we have a single dataset so just return it as is
        return all_datasets[0]

    if streaming:
        interleaved_dataset = interleave_datasets(
            all_datasets,
            stopping_strategy=stopping_strategy,
            probabilities=probabilities,
            seed=seed,
        )
    else:
        with accelerator.main_process_first():
            interleaved_dataset = concatenate_datasets(all_datasets)

    return interleaved_dataset