|
--- |
|
language: en |
|
datasets: |
|
- LIUM/tedlium |
|
tags: |
|
- speech |
|
license: apache-2.0 |
|
--- |
|
# Wav2Vec2-Large-Tedlium |
|
The Wav2Vec2 large model fine-tuned on the TEDLIUM corpus. |
|
|
|
The model is initialised with Facebook's [Wav2Vec2 large LV-60k](https://huggingface.co/facebook/wav2vec2-large-lv60) checkpoint pre-trained on 60,000h of audiobooks from the LibriVox project. It is fine-tuned on 452h of TED talks from the [TEDLIUM](https://huggingface.co/datasets/LIUM/tedlium) corpus (Release 3). When using the model, make sure that your speech input is sampled at 16Khz. |
|
|
|
The model achieves a word error rate (WER) of 8.4% on the dev set and 8.2% on the test set. [Training logs](https://wandb.ai/sanchit-gandhi/tedlium/runs/10c85yc4?workspace=user-sanchit-gandhi) document the training and evaluation progress over 50k steps of fine-tuning. |
|
|
|
See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how this model was fine-tuned. |
|
|
|
|
|
# Usage |
|
To transcribe audio files the model can be used as a standalone acoustic model as follows: |
|
```python |
|
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC |
|
from datasets import load_dataset |
|
import torch |
|
|
|
# load model and processor |
|
processor = Wav2Vec2Processor.from_pretrained("sanchit-gandhi/wav2vec2-large-tedlium") |
|
model = Wav2Vec2ForCTC.from_pretrained("sanchit-gandhi/wav2vec2-large-tedlium") |
|
|
|
# load dummy dataset |
|
ds = load_dataset("sanchit-gandhi/tedlium_dummy", split="validation") |
|
|
|
# process audio inputs |
|
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1 |
|
|
|
# retrieve logits |
|
logits = model(input_values).logits |
|
|
|
# take argmax and decode |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcription = processor.batch_decode(predicted_ids) |
|
print("Target: ", ds["text"][0]) |
|
print("Transcription: ", transcription[0]) |
|
``` |
|
|
|
## Evaluation |
|
|
|
This code snippet shows how to evaluate **Wav2Vec2-Large-Tedlium** on the TEDLIUM test data. |
|
|
|
```python |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import torch |
|
from jiwer import wer |
|
|
|
tedlium_eval = load_dataset("LIUM/tedlium", "release3", split="test") |
|
model = Wav2Vec2ForCTC.from_pretrained("sanchit-gandhi/wav2vec2-large-tedlium").to("cuda") |
|
processor = Wav2Vec2Processor.from_pretrained("sanchit-gandhi/wav2vec2-large-tedlium") |
|
def map_to_pred(batch): |
|
input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values |
|
with torch.no_grad(): |
|
logits = model(input_values.to("cuda")).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcription = processor.batch_decode(predicted_ids) |
|
batch["transcription"] = transcription |
|
return batch |
|
result = tedlium_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"]) |
|
print("WER:", wer(result["text"], result["transcription"])) |
|
``` |