--- language: - ru license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-small model-index: - name: Whisper Small Russian results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 ru type: mozilla-foundation/common_voice_11_0 config: ru split: test args: ru metrics: - type: wer value: 12.883608587437623 name: Wer --- # Whisper Small Russian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 ru dataset. It achieves the following results on the evaluation set: - Loss: 0.2179 - Wer: 12.8836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0637 | 1.4 | 1000 | 0.2179 | 12.8836 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 2.0.0.dev20221210+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2