--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - f1 - precision model-index: - name: bert-fraud-classification-test-mass results: [] --- [Visualize in Weights & Biases](https://wandb.ai/sandeshrajx/ultron-nlp/runs/bim0galx) # bert-fraud-classification-test-mass This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3963 - F1: 0.8194 - Precision: 0.8445 - Val Accuracy: 0.8375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 44 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 88 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Val Accuracy | |:-------------:|:------:|:----:|:---------------:|:------:|:---------:|:------------:| | 0.5197 | 0.1743 | 40 | 0.5468 | 0.7488 | 0.6907 | 0.7459 | | 0.5208 | 0.3486 | 80 | 0.4667 | 0.7687 | 0.7890 | 0.7911 | | 0.4235 | 0.5229 | 120 | 0.4351 | 0.7986 | 0.7898 | 0.8113 | | 0.404 | 0.6972 | 160 | 0.4577 | 0.7972 | 0.7751 | 0.8066 | | 0.3736 | 0.8715 | 200 | 0.4274 | 0.7914 | 0.8775 | 0.8240 | | 0.419 | 1.0458 | 240 | 0.4058 | 0.7912 | 0.8737 | 0.8232 | | 0.2701 | 1.2200 | 280 | 0.4075 | 0.8124 | 0.8393 | 0.8316 | | 0.4345 | 1.3943 | 320 | 0.4246 | 0.8110 | 0.8088 | 0.8244 | | 0.3258 | 1.5686 | 360 | 0.4023 | 0.7992 | 0.8788 | 0.8294 | | 0.3938 | 1.7429 | 400 | 0.3945 | 0.8174 | 0.8447 | 0.8361 | | 0.2529 | 1.9172 | 440 | 0.3963 | 0.8194 | 0.8445 | 0.8375 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0