--- datasets: - mozilla-foundation/common_voice_13_0 language: - zh base_model: - openai/whisper-large-v3-turbo pipeline_tag: automatic-speech-recognition --- # Model Card for Model ID This model card describes a fine-tuned version of the Whisper-large-v3-turbo model, optimized for Mandarin automatic speech recognition (ASR). The model was fine-tuned on the Common Voice 13.0 dataset using PEFT with LoRA to ensure efficient training while maintaining the performance of the original model. It achieves the following results on the evaluation set:
- Common Voice 13.0 dataset(test):
Wer before fine-tune: 77.08
Wer after fine-tune: 40.29
- Common Voice 16.1 dataset(test):
Wer before fine-tune: 77.57
Wer after fine-tune: 40.39 ## Uses ```bash import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline from datasets import load_dataset device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "sandy1990418/whisper-large-v3-turbo-chinese" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, torch_dtype=torch_dtype, device=device, ) dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") sample = dataset[0]["audio"] result = pipe(sample) print(result["text"]) ```