--- library_name: transformers license: apache-2.0 base_model: distilbert/distilroberta-base tags: - generated_from_trainer - sentiment_analysis model-index: - name: augmented-go-emotions-plus-other-datasets-fine-tuned-distilroberta-v2 results: [] datasets: - google-research-datasets/go_emotions language: - en metrics: - f1 - precision - recall --- # augmented-go-emotions-plus-other-datasets-fine-tuned-distilroberta-v2 This model is a fine-tuned version of [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the these datasets: - [GoEmotions](https://github.com/google-research/google-research/tree/master/goemotions) - [sem_eval_2018_task_1 (English)](https://huggingface.co/datasets/SemEvalWorkshop/sem_eval_2018_task_1) - [Emotion Detection from Text - Pashupati Gupta](https://www.kaggle.com/datasets/pashupatigupta/emotion-detection-from-text/data) - [Emotions dataset for NLP - praveengovi](https://www.kaggle.com/datasets/praveengovi/emotions-dataset-for-nlp/data) It has also been data augmented using TextAttack. On top of the (first version)[https://huggingface.co/paradoxmaske/augmented-go-emotions-plus-other-datasets-fine-tuned-distilroberta] of the model, V2 added more data augmentation (EasyDataAugmenter) on all labels except 'neutral'. It achieves the following results on the evaluation set: - Loss: 0.0792 - Micro Precision: 0.6922 - Micro Recall: 0.5854 - Micro F1: 0.6343 - Macro Precision: 0.5809 - Macro Recall: 0.4729 - Macro F1: 0.5136 - Weighted Precision: 0.6764 - Weighted Recall: 0.5854 - Weighted F1: 0.6238 - Hamming Loss: 0.0287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 | Weighted Precision | Weighted Recall | Weighted F1 | Hamming Loss | |:-------------:|:-----:|:-----:|:---------------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|:------------:| | No log | 1.0 | 18858 | 0.0745 | 0.7528 | 0.5169 | 0.6129 | 0.6155 | 0.3805 | 0.4336 | 0.7386 | 0.5169 | 0.5827 | 0.0278 | | No log | 2.0 | 37716 | 0.0757 | 0.7102 | 0.5616 | 0.6272 | 0.5937 | 0.4658 | 0.5049 | 0.6978 | 0.5616 | 0.6105 | 0.0284 | | No log | 3.0 | 56574 | 0.0792 | 0.6922 | 0.5854 | 0.6343 | 0.5809 | 0.4729 | 0.5136 | 0.6764 | 0.5854 | 0.6238 | 0.0287 | ### Test results | Label | Precision | Recall | F1-Score | Support | |-----------------|-----------|--------|----------|---------| | admiration | 0.65 | 0.66 | 0.66 | 504 | | amusement | 0.71 | 0.84 | 0.77 | 264 | | anger | 0.80 | 0.70 | 0.74 | 1585 | | annoyance | 0.44 | 0.25 | 0.32 | 320 | | approval | 0.47 | 0.32 | 0.38 | 351 | | caring | 0.37 | 0.31 | 0.34 | 135 | | confusion | 0.41 | 0.42 | 0.42 | 153 | | curiosity | 0.50 | 0.42 | 0.46 | 284 | | desire | 0.47 | 0.35 | 0.40 | 83 | | disappointment | 0.31 | 0.16 | 0.21 | 151 | | disapproval | 0.42 | 0.29 | 0.35 | 267 | | disgust | 0.72 | 0.63 | 0.67 | 1222 | | embarrassment | 0.52 | 0.35 | 0.42 | 37 | | excitement | 0.43 | 0.39 | 0.41 | 103 | | fear | 0.79 | 0.76 | 0.78 | 787 | | gratitude | 0.92 | 0.89 | 0.90 | 352 | | grief | 0.00 | 0.00 | 0.00 | 6 | | joy | 0.87 | 0.77 | 0.81 | 2298 | | love | 0.69 | 0.61 | 0.65 | 1305 | | nervousness | 0.43 | 0.26 | 0.32 | 23 | | optimism | 0.72 | 0.57 | 0.64 | 1329 | | pride | 0.62 | 0.31 | 0.42 | 16 | | realization | 0.39 | 0.19 | 0.26 | 145 | | relief | 0.26 | 0.24 | 0.25 | 160 | | remorse | 0.56 | 0.75 | 0.64 | 56 | | sadness | 0.75 | 0.69 | 0.72 | 2212 | | surprise | 0.51 | 0.35 | 0.41 | 572 | | neutral | 0.67 | 0.51 | 0.58 | 2668 | | **Micro Avg** | 0.71 | 0.60 | 0.65 | 17388 | | **Macro Avg** | 0.55 | 0.46 | 0.50 | 17388 | | **Weighted Avg**| 0.70 | 0.60 | 0.64 | 17388 | | **Samples Avg** | 0.64 | 0.61 | 0.61 | 17388 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.21.0