pm
commited on
Commit
•
5ec3b79
1
Parent(s):
d79d4dc
Update README.md
Browse files
README.md
CHANGED
@@ -1,70 +1,79 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
license: apache-2.0
|
4 |
-
base_model: distilbert/distilroberta-base
|
5 |
-
tags:
|
6 |
-
- generated_from_trainer
|
7 |
-
|
8 |
-
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
-
|
25 |
-
|
26 |
-
-
|
27 |
-
|
28 |
-
-
|
29 |
-
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
###
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: distilbert/distilroberta-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- sentiment_analysis
|
8 |
+
model-index:
|
9 |
+
- name: go-emotions-fine-tuned-distilroberta
|
10 |
+
results: []
|
11 |
+
datasets:
|
12 |
+
- google-research-datasets/go_emotions
|
13 |
+
language:
|
14 |
+
- en
|
15 |
+
metrics:
|
16 |
+
- recall
|
17 |
+
- precision
|
18 |
+
- f1
|
19 |
+
---
|
20 |
+
|
21 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
22 |
+
should probably proofread and complete it, then remove this comment. -->
|
23 |
+
|
24 |
+
# go-emotions-fine-tuned-distilroberta
|
25 |
+
|
26 |
+
This model is a fine-tuned version of [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on an unknown dataset.
|
27 |
+
It achieves the following results on the evaluation set:
|
28 |
+
- Loss: 0.0841
|
29 |
+
- Micro Precision: 0.6789
|
30 |
+
- Micro Recall: 0.5047
|
31 |
+
- Micro F1: 0.5790
|
32 |
+
- Macro Precision: 0.5559
|
33 |
+
- Macro Recall: 0.4000
|
34 |
+
- Macro F1: 0.4502
|
35 |
+
- Weighted Precision: 0.6538
|
36 |
+
- Weighted Recall: 0.5047
|
37 |
+
- Weighted F1: 0.5577
|
38 |
+
- Hamming Loss: 0.0308
|
39 |
+
|
40 |
+
## Model description
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Intended uses & limitations
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training and evaluation data
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training procedure
|
53 |
+
|
54 |
+
### Training hyperparameters
|
55 |
+
|
56 |
+
The following hyperparameters were used during training:
|
57 |
+
- learning_rate: 5e-05
|
58 |
+
- train_batch_size: 8
|
59 |
+
- eval_batch_size: 8
|
60 |
+
- seed: 42
|
61 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- num_epochs: 3.0
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 | Weighted Precision | Weighted Recall | Weighted F1 | Hamming Loss |
|
68 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|:------------:|
|
69 |
+
| 0.1062 | 1.0 | 5427 | 0.0889 | 0.6956 | 0.4498 | 0.5464 | 0.5087 | 0.3111 | 0.3537 | 0.6246 | 0.4498 | 0.4936 | 0.0314 |
|
70 |
+
| 0.0828 | 2.0 | 10854 | 0.0834 | 0.7042 | 0.4798 | 0.5707 | 0.5874 | 0.3562 | 0.4108 | 0.6872 | 0.4798 | 0.5306 | 0.0303 |
|
71 |
+
| 0.0704 | 3.0 | 16281 | 0.0841 | 0.6789 | 0.5047 | 0.5790 | 0.5559 | 0.4000 | 0.4502 | 0.6538 | 0.5047 | 0.5577 | 0.0308 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.47.0
|
77 |
+
- Pytorch 2.3.1+cu121
|
78 |
+
- Datasets 2.20.0
|
79 |
+
- Tokenizers 0.21.0
|