pm commited on
Commit
5ec3b79
1 Parent(s): d79d4dc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -70
README.md CHANGED
@@ -1,70 +1,79 @@
1
- ---
2
- library_name: transformers
3
- license: apache-2.0
4
- base_model: distilbert/distilroberta-base
5
- tags:
6
- - generated_from_trainer
7
- model-index:
8
- - name: go-emotions-fine-tuned-distilroberta
9
- results: []
10
- ---
11
-
12
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
- should probably proofread and complete it, then remove this comment. -->
14
-
15
- # go-emotions-fine-tuned-distilroberta
16
-
17
- This model is a fine-tuned version of [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on an unknown dataset.
18
- It achieves the following results on the evaluation set:
19
- - Loss: 0.0841
20
- - Micro Precision: 0.6789
21
- - Micro Recall: 0.5047
22
- - Micro F1: 0.5790
23
- - Macro Precision: 0.5559
24
- - Macro Recall: 0.4000
25
- - Macro F1: 0.4502
26
- - Weighted Precision: 0.6538
27
- - Weighted Recall: 0.5047
28
- - Weighted F1: 0.5577
29
- - Hamming Loss: 0.0308
30
-
31
- ## Model description
32
-
33
- More information needed
34
-
35
- ## Intended uses & limitations
36
-
37
- More information needed
38
-
39
- ## Training and evaluation data
40
-
41
- More information needed
42
-
43
- ## Training procedure
44
-
45
- ### Training hyperparameters
46
-
47
- The following hyperparameters were used during training:
48
- - learning_rate: 5e-05
49
- - train_batch_size: 8
50
- - eval_batch_size: 8
51
- - seed: 42
52
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
53
- - lr_scheduler_type: linear
54
- - num_epochs: 3.0
55
-
56
- ### Training results
57
-
58
- | Training Loss | Epoch | Step | Validation Loss | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 | Weighted Precision | Weighted Recall | Weighted F1 | Hamming Loss |
59
- |:-------------:|:-----:|:-----:|:---------------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|:------------:|
60
- | 0.1062 | 1.0 | 5427 | 0.0889 | 0.6956 | 0.4498 | 0.5464 | 0.5087 | 0.3111 | 0.3537 | 0.6246 | 0.4498 | 0.4936 | 0.0314 |
61
- | 0.0828 | 2.0 | 10854 | 0.0834 | 0.7042 | 0.4798 | 0.5707 | 0.5874 | 0.3562 | 0.4108 | 0.6872 | 0.4798 | 0.5306 | 0.0303 |
62
- | 0.0704 | 3.0 | 16281 | 0.0841 | 0.6789 | 0.5047 | 0.5790 | 0.5559 | 0.4000 | 0.4502 | 0.6538 | 0.5047 | 0.5577 | 0.0308 |
63
-
64
-
65
- ### Framework versions
66
-
67
- - Transformers 4.47.0
68
- - Pytorch 2.3.1+cu121
69
- - Datasets 2.20.0
70
- - Tokenizers 0.21.0
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: distilbert/distilroberta-base
5
+ tags:
6
+ - generated_from_trainer
7
+ - sentiment_analysis
8
+ model-index:
9
+ - name: go-emotions-fine-tuned-distilroberta
10
+ results: []
11
+ datasets:
12
+ - google-research-datasets/go_emotions
13
+ language:
14
+ - en
15
+ metrics:
16
+ - recall
17
+ - precision
18
+ - f1
19
+ ---
20
+
21
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
22
+ should probably proofread and complete it, then remove this comment. -->
23
+
24
+ # go-emotions-fine-tuned-distilroberta
25
+
26
+ This model is a fine-tuned version of [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on an unknown dataset.
27
+ It achieves the following results on the evaluation set:
28
+ - Loss: 0.0841
29
+ - Micro Precision: 0.6789
30
+ - Micro Recall: 0.5047
31
+ - Micro F1: 0.5790
32
+ - Macro Precision: 0.5559
33
+ - Macro Recall: 0.4000
34
+ - Macro F1: 0.4502
35
+ - Weighted Precision: 0.6538
36
+ - Weighted Recall: 0.5047
37
+ - Weighted F1: 0.5577
38
+ - Hamming Loss: 0.0308
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 5e-05
58
+ - train_batch_size: 8
59
+ - eval_batch_size: 8
60
+ - seed: 42
61
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
62
+ - lr_scheduler_type: linear
63
+ - num_epochs: 3.0
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 | Weighted Precision | Weighted Recall | Weighted F1 | Hamming Loss |
68
+ |:-------------:|:-----:|:-----:|:---------------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|:------------:|
69
+ | 0.1062 | 1.0 | 5427 | 0.0889 | 0.6956 | 0.4498 | 0.5464 | 0.5087 | 0.3111 | 0.3537 | 0.6246 | 0.4498 | 0.4936 | 0.0314 |
70
+ | 0.0828 | 2.0 | 10854 | 0.0834 | 0.7042 | 0.4798 | 0.5707 | 0.5874 | 0.3562 | 0.4108 | 0.6872 | 0.4798 | 0.5306 | 0.0303 |
71
+ | 0.0704 | 3.0 | 16281 | 0.0841 | 0.6789 | 0.5047 | 0.5790 | 0.5559 | 0.4000 | 0.4502 | 0.6538 | 0.5047 | 0.5577 | 0.0308 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.47.0
77
+ - Pytorch 2.3.1+cu121
78
+ - Datasets 2.20.0
79
+ - Tokenizers 0.21.0