--- library_name: transformers license: apache-2.0 base_model: distilbert/distilroberta-base tags: - generated_from_trainer - sentiment_analysis model-index: - name: go-emotions-fine-tuned-distilroberta results: [] datasets: - google-research-datasets/go_emotions language: - en metrics: - recall - precision - f1 --- # go-emotions-fine-tuned-distilroberta This model is a fine-tuned version of [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0841 - Micro Precision: 0.6789 - Micro Recall: 0.5047 - Micro F1: 0.5790 - Macro Precision: 0.5559 - Macro Recall: 0.4000 - Macro F1: 0.4502 - Weighted Precision: 0.6538 - Weighted Recall: 0.5047 - Weighted F1: 0.5577 - Hamming Loss: 0.0308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 | Weighted Precision | Weighted Recall | Weighted F1 | Hamming Loss | |:-------------:|:-----:|:-----:|:---------------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|:------------:| | 0.1062 | 1.0 | 5427 | 0.0889 | 0.6956 | 0.4498 | 0.5464 | 0.5087 | 0.3111 | 0.3537 | 0.6246 | 0.4498 | 0.4936 | 0.0314 | | 0.0828 | 2.0 | 10854 | 0.0834 | 0.7042 | 0.4798 | 0.5707 | 0.5874 | 0.3562 | 0.4108 | 0.6872 | 0.4798 | 0.5306 | 0.0303 | | 0.0704 | 3.0 | 16281 | 0.0841 | 0.6789 | 0.5047 | 0.5790 | 0.5559 | 0.4000 | 0.4502 | 0.6538 | 0.5047 | 0.5577 | 0.0308 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.21.0