--- library_name: transformers license: apache-2.0 base_model: distilbert/distilroberta-base tags: - generated_from_trainer - sentiment_analysis model-index: - name: go-emotions-fine-tuned-distilroberta results: [] datasets: - google-research-datasets/go_emotions language: - en metrics: - recall - precision - f1 --- # go-emotions-fine-tuned-distilroberta This model is a fine-tuned version of [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on GoEmotions dataset. It achieves the following results on the evaluation set (threshold = 0.5): - Loss: 0.0841 - Micro Precision: 0.6789 - Micro Recall: 0.5047 - Micro F1: 0.5790 - Macro Precision: 0.5559 - Macro Recall: 0.4000 - Macro F1: 0.4502 - Weighted Precision: 0.6538 - Weighted Recall: 0.5047 - Weighted F1: 0.5577 - Hamming Loss: 0.0308 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 | Weighted Precision | Weighted Recall | Weighted F1 | Hamming Loss | |:-------------:|:-----:|:-----:|:---------------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|:------------:| | 0.1062 | 1.0 | 5427 | 0.0889 | 0.6956 | 0.4498 | 0.5464 | 0.5087 | 0.3111 | 0.3537 | 0.6246 | 0.4498 | 0.4936 | 0.0314 | | 0.0828 | 2.0 | 10854 | 0.0834 | 0.7042 | 0.4798 | 0.5707 | 0.5874 | 0.3562 | 0.4108 | 0.6872 | 0.4798 | 0.5306 | 0.0303 | | 0.0704 | 3.0 | 16281 | 0.0841 | 0.6789 | 0.5047 | 0.5790 | 0.5559 | 0.4000 | 0.4502 | 0.6538 | 0.5047 | 0.5577 | 0.0308 | ### Test results | Class | Precision | Recall | F1-Score | Support | |-------------------|-----------|--------|----------|---------| | admiration | 0.69 | 0.73 | 0.71 | 504 | | amusement | 0.79 | 0.87 | 0.83 | 264 | | anger | 0.58 | 0.41 | 0.48 | 198 | | annoyance | 0.45 | 0.16 | 0.24 | 320 | | approval | 0.58 | 0.34 | 0.43 | 351 | | caring | 0.51 | 0.29 | 0.37 | 135 | | confusion | 0.57 | 0.38 | 0.46 | 153 | | curiosity | 0.50 | 0.46 | 0.48 | 284 | | desire | 0.70 | 0.36 | 0.48 | 83 | | disappointment | 0.60 | 0.19 | 0.28 | 151 | | disapproval | 0.42 | 0.29 | 0.34 | 267 | | disgust | 0.63 | 0.33 | 0.44 | 123 | | embarrassment | 0.82 | 0.38 | 0.52 | 37 | | excitement | 0.57 | 0.33 | 0.42 | 103 | | fear | 0.71 | 0.64 | 0.68 | 78 | | gratitude | 0.94 | 0.90 | 0.92 | 352 | | grief | 0.00 | 0.00 | 0.00 | 6 | | joy | 0.69 | 0.54 | 0.61 | 161 | | love | 0.82 | 0.84 | 0.83 | 238 | | nervousness | 0.67 | 0.17 | 0.28 | 23 | | optimism | 0.63 | 0.48 | 0.55 | 186 | | pride | 0.00 | 0.00 | 0.00 | 16 | | realization | 0.54 | 0.13 | 0.21 | 145 | | relief | 0.00 | 0.00 | 0.00 | 11 | | remorse | 0.58 | 0.77 | 0.66 | 56 | | sadness | 0.67 | 0.49 | 0.57 | 156 | | surprise | 0.61 | 0.44 | 0.51 | 141 | | neutral | 0.73 | 0.54 | 0.62 | 1787 | | **micro avg** | 0.68 | 0.51 | 0.58 | 6329 | | **macro avg** | 0.57 | 0.41 | 0.46 | 6329 | | **weighted avg** | 0.66 | 0.51 | 0.56 | 6329 | | **samples avg** | 0.56 | 0.53 | 0.54 | 6329 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.21.0