--- library_name: transformers license: apache-2.0 base_model: distilbert/distilroberta-base tags: - generated_from_trainer - sentiment_analysis model-index: - name: go-emotions-plus-other-datasets-fine-tuned-distilroberta results: [] datasets: - google-research-datasets/go_emotions language: - en metrics: - f1 - precision - recall --- # go-emotions-plus-other-datasets-fine-tuned-distilroberta This model is a fine-tuned version of [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the these datasets: - [GoEmotions](https://github.com/google-research/google-research/tree/master/goemotions) - [sem_eval_2018_task_1 (English)](https://huggingface.co/datasets/SemEvalWorkshop/sem_eval_2018_task_1) - [Emotion Detection from Text - Pashupati Gupta](https://www.kaggle.com/datasets/pashupatigupta/emotion-detection-from-text/data) - [Emotions dataset for NLP - praveengovi](https://www.kaggle.com/datasets/praveengovi/emotions-dataset-for-nlp/data) It achieves the following results on the evaluation set: - Loss: 0.0719 - Micro Precision: 0.7358 - Micro Recall: 0.5840 - Micro F1: 0.6512 - Macro Precision: 0.5957 - Macro Recall: 0.4191 - Macro F1: 0.4670 - Weighted Precision: 0.7120 - Weighted Recall: 0.5840 - Weighted F1: 0.6286 - Hamming Loss: 0.0266 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 | Weighted Precision | Weighted Recall | Weighted F1 | Hamming Loss | |:-------------:|:-----:|:-----:|:---------------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|:------------:| | No log | 1.0 | 10377 | 0.0788 | 0.7494 | 0.4946 | 0.5959 | 0.5505 | 0.3191 | 0.3567 | 0.7217 | 0.4946 | 0.5559 | 0.0285 | | No log | 2.0 | 20754 | 0.0723 | 0.7354 | 0.5782 | 0.6474 | 0.6452 | 0.3792 | 0.4259 | 0.7312 | 0.5782 | 0.6154 | 0.0268 | | No log | 3.0 | 31131 | 0.0719 | 0.7358 | 0.5840 | 0.6512 | 0.5957 | 0.4191 | 0.4670 | 0.7120 | 0.5840 | 0.6286 | 0.0266 | ### Test results Threshold = 0.5 | Emotion | Precision | Recall | F1-Score | Support | |------------------|-----------|--------|----------|---------| | admiration | 0.65 | 0.69 | 0.67 | 504 | | amusement | 0.72 | 0.89 | 0.80 | 264 | | anger | 0.78 | 0.70 | 0.74 | 1585 | | annoyance | 0.51 | 0.11 | 0.18 | 320 | | approval | 0.58 | 0.31 | 0.41 | 351 | | caring | 0.50 | 0.27 | 0.35 | 135 | | confusion | 0.51 | 0.33 | 0.40 | 153 | | curiosity | 0.52 | 0.49 | 0.50 | 284 | | desire | 0.46 | 0.25 | 0.33 | 83 | | disappointment | 0.58 | 0.09 | 0.16 | 151 | | disapproval | 0.51 | 0.28 | 0.36 | 267 | | disgust | 0.72 | 0.64 | 0.68 | 1222 | | embarrassment | 0.78 | 0.19 | 0.30 | 37 | | excitement | 0.54 | 0.36 | 0.43 | 103 | | fear | 0.78 | 0.75 | 0.77 | 787 | | gratitude | 0.92 | 0.89 | 0.90 | 352 | | grief | 0.00 | 0.00 | 0.00 | 6 | | joy | 0.87 | 0.77 | 0.82 | 2298 | | love | 0.72 | 0.60 | 0.65 | 1305 | | nervousness | 0.00 | 0.00 | 0.00 | 23 | | optimism | 0.71 | 0.56 | 0.63 | 1329 | | pride | 0.00 | 0.00 | 0.00 | 16 | | realization | 0.46 | 0.11 | 0.18 | 145 | | relief | 0.59 | 0.08 | 0.14 | 160 | | remorse | 0.56 | 0.77 | 0.65 | 56 | | sadness | 0.78 | 0.67 | 0.72 | 2212 | | surprise | 0.59 | 0.28 | 0.38 | 572 | | neutral | 0.69 | 0.56 | 0.62 | 2668 | | **Micro Avg** | 0.74 | 0.60 | 0.66 | 17388 | | **Macro Avg** | 0.57 | 0.42 | 0.46 | 17388 | | **Weighted Avg** | 0.72 | 0.60 | 0.65 | 17388 | | **Samples Avg** | 0.64 | 0.61 | 0.61 | 17388 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.21.0