santiviquez's picture
update model card README.md
b7b782c
|
raw
history blame
3.52 kB
metadata
license: apache-2.0
tags:
  - summarization
  - generated_from_trainer
datasets:
  - samsum
metrics:
  - rouge
model-index:
  - name: t5-small-finetuned-samsum-en
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: samsum
          type: samsum
          args: samsum
        metrics:
          - name: Rouge1
            type: rouge
            value: 42.3215

t5-small-finetuned-samsum-en

This model is a fine-tuned version of t5-small on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7863
  • Rouge1: 42.3215
  • Rouge2: 19.4644
  • Rougel: 35.3715
  • Rougelsum: 39.1274

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
2.2448 1.0 300 1.8993 39.5059 17.0654 32.9974 36.6153
2.0428 2.0 600 1.8499 40.0529 17.4367 33.4804 37.057
1.9626 3.0 900 1.8278 40.7994 17.918 34.0773 37.6219
1.8992 4.0 1200 1.8118 41.3782 18.5579 34.7794 38.4994
1.8429 5.0 1500 1.8006 41.8624 18.7592 34.9262 38.7019
1.8057 6.0 1800 1.7988 41.1316 18.5242 34.7271 38.2821
1.775 7.0 2100 1.7856 42.2036 19.3343 35.4442 39.2114
1.7376 8.0 2400 1.7797 41.9569 18.9482 35.1953 38.7609
1.7096 9.0 2700 1.7780 42.6065 19.2152 35.4563 39.2736
1.6885 10.0 3000 1.7826 42.1595 18.8477 34.8679 38.9388
1.6581 11.0 3300 1.7809 42.291 19.0846 35.1938 38.894
1.6392 12.0 3600 1.7824 42.3588 19.4507 35.4588 39.2067
1.6258 13.0 3900 1.7806 42.0932 19.002 35.0112 38.8053
1.6042 14.0 4200 1.7828 42.0564 19.3141 35.2479 38.8301
1.5993 15.0 4500 1.7824 42.6056 19.5164 35.4112 39.2322
1.5869 16.0 4800 1.7839 42.1505 19.1529 35.0853 38.8788
1.5778 17.0 5100 1.7827 42.5416 19.5103 35.5507 39.293
1.5716 18.0 5400 1.7865 42.3028 19.3783 35.3466 39.0594
1.5615 19.0 5700 1.7857 42.4001 19.5111 35.4686 39.1614
1.5606 20.0 6000 1.7863 42.3215 19.4644 35.3715 39.1274

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1