santiviquez
commited on
Commit
•
b7b782c
1
Parent(s):
df7d714
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- summarization
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- samsum
|
8 |
+
metrics:
|
9 |
+
- rouge
|
10 |
+
model-index:
|
11 |
+
- name: t5-small-finetuned-samsum-en
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Sequence-to-sequence Language Modeling
|
15 |
+
type: text2text-generation
|
16 |
+
dataset:
|
17 |
+
name: samsum
|
18 |
+
type: samsum
|
19 |
+
args: samsum
|
20 |
+
metrics:
|
21 |
+
- name: Rouge1
|
22 |
+
type: rouge
|
23 |
+
value: 42.3215
|
24 |
+
---
|
25 |
+
|
26 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
27 |
+
should probably proofread and complete it, then remove this comment. -->
|
28 |
+
|
29 |
+
# t5-small-finetuned-samsum-en
|
30 |
+
|
31 |
+
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the samsum dataset.
|
32 |
+
It achieves the following results on the evaluation set:
|
33 |
+
- Loss: 1.7863
|
34 |
+
- Rouge1: 42.3215
|
35 |
+
- Rouge2: 19.4644
|
36 |
+
- Rougel: 35.3715
|
37 |
+
- Rougelsum: 39.1274
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 5.6e-05
|
57 |
+
- train_batch_size: 10
|
58 |
+
- eval_batch_size: 10
|
59 |
+
- seed: 42
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- num_epochs: 20
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
|
68 |
+
| 2.2448 | 1.0 | 300 | 1.8993 | 39.5059 | 17.0654 | 32.9974 | 36.6153 |
|
69 |
+
| 2.0428 | 2.0 | 600 | 1.8499 | 40.0529 | 17.4367 | 33.4804 | 37.057 |
|
70 |
+
| 1.9626 | 3.0 | 900 | 1.8278 | 40.7994 | 17.918 | 34.0773 | 37.6219 |
|
71 |
+
| 1.8992 | 4.0 | 1200 | 1.8118 | 41.3782 | 18.5579 | 34.7794 | 38.4994 |
|
72 |
+
| 1.8429 | 5.0 | 1500 | 1.8006 | 41.8624 | 18.7592 | 34.9262 | 38.7019 |
|
73 |
+
| 1.8057 | 6.0 | 1800 | 1.7988 | 41.1316 | 18.5242 | 34.7271 | 38.2821 |
|
74 |
+
| 1.775 | 7.0 | 2100 | 1.7856 | 42.2036 | 19.3343 | 35.4442 | 39.2114 |
|
75 |
+
| 1.7376 | 8.0 | 2400 | 1.7797 | 41.9569 | 18.9482 | 35.1953 | 38.7609 |
|
76 |
+
| 1.7096 | 9.0 | 2700 | 1.7780 | 42.6065 | 19.2152 | 35.4563 | 39.2736 |
|
77 |
+
| 1.6885 | 10.0 | 3000 | 1.7826 | 42.1595 | 18.8477 | 34.8679 | 38.9388 |
|
78 |
+
| 1.6581 | 11.0 | 3300 | 1.7809 | 42.291 | 19.0846 | 35.1938 | 38.894 |
|
79 |
+
| 1.6392 | 12.0 | 3600 | 1.7824 | 42.3588 | 19.4507 | 35.4588 | 39.2067 |
|
80 |
+
| 1.6258 | 13.0 | 3900 | 1.7806 | 42.0932 | 19.002 | 35.0112 | 38.8053 |
|
81 |
+
| 1.6042 | 14.0 | 4200 | 1.7828 | 42.0564 | 19.3141 | 35.2479 | 38.8301 |
|
82 |
+
| 1.5993 | 15.0 | 4500 | 1.7824 | 42.6056 | 19.5164 | 35.4112 | 39.2322 |
|
83 |
+
| 1.5869 | 16.0 | 4800 | 1.7839 | 42.1505 | 19.1529 | 35.0853 | 38.8788 |
|
84 |
+
| 1.5778 | 17.0 | 5100 | 1.7827 | 42.5416 | 19.5103 | 35.5507 | 39.293 |
|
85 |
+
| 1.5716 | 18.0 | 5400 | 1.7865 | 42.3028 | 19.3783 | 35.3466 | 39.0594 |
|
86 |
+
| 1.5615 | 19.0 | 5700 | 1.7857 | 42.4001 | 19.5111 | 35.4686 | 39.1614 |
|
87 |
+
| 1.5606 | 20.0 | 6000 | 1.7863 | 42.3215 | 19.4644 | 35.3715 | 39.1274 |
|
88 |
+
|
89 |
+
|
90 |
+
### Framework versions
|
91 |
+
|
92 |
+
- Transformers 4.19.2
|
93 |
+
- Pytorch 1.11.0+cu113
|
94 |
+
- Datasets 2.2.2
|
95 |
+
- Tokenizers 0.12.1
|