--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: t5-small-finetuned-samsum-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum args: samsum metrics: - name: Rouge1 type: rouge value: 44.3313 - task: type: summarization name: Summarization dataset: name: samsum type: samsum config: samsum split: test metrics: - name: ROUGE-1 type: rouge value: 40.0386 verified: true - name: ROUGE-2 type: rouge value: 15.8501 verified: true - name: ROUGE-L type: rouge value: 31.8084 verified: true - name: ROUGE-LSUM type: rouge value: 36.0888 verified: true - name: loss type: loss value: 2.1917073726654053 verified: true - name: gen_len type: gen_len value: 18.1074 verified: true --- # t5-small-finetuned-samsum-en This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.9335 - Rouge1: 44.3313 - Rouge2: 20.71 - Rougel: 37.221 - Rougelsum: 40.9603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.4912 | 1.0 | 300 | 1.9043 | 44.1517 | 20.0186 | 36.6053 | 40.5164 | | 1.5055 | 2.0 | 600 | 1.8912 | 44.1473 | 20.4456 | 37.069 | 40.6714 | | 1.4852 | 3.0 | 900 | 1.8986 | 44.7536 | 20.8646 | 37.525 | 41.2189 | | 1.4539 | 4.0 | 1200 | 1.9136 | 44.2144 | 20.3446 | 37.1088 | 40.7581 | | 1.4262 | 5.0 | 1500 | 1.9215 | 44.2656 | 20.6044 | 37.3267 | 40.9469 | | 1.4118 | 6.0 | 1800 | 1.9247 | 43.8793 | 20.4663 | 37.0614 | 40.6065 | | 1.3987 | 7.0 | 2100 | 1.9256 | 43.9981 | 20.2703 | 36.7856 | 40.6354 | | 1.3822 | 8.0 | 2400 | 1.9316 | 43.9732 | 20.4559 | 36.8039 | 40.5784 | | 1.3773 | 9.0 | 2700 | 1.9314 | 44.3075 | 20.5435 | 37.0457 | 40.832 | | 1.3795 | 10.0 | 3000 | 1.9335 | 44.3313 | 20.71 | 37.221 | 40.9603 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1