santoshkosgi
commited on
Commit
•
23e6996
1
Parent(s):
d78eb1a
Initial Commit
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -877.48 +/- 273.82
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b259544d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b25954560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b259545f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b25954680>", "_build": "<function ActorCriticPolicy._build at 0x7f4b25954710>", "forward": "<function ActorCriticPolicy.forward at 0x7f4b259547a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b25954830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4b259548c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b25954950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b259549e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b25954a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4b25929270>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAGKOJvpaON4SHt/iCi5gFmiFGi3Ftw9P+cygFbgarc1r+fvaPI9idrA8TpCBcowh2p503/mYiojKDGQG9OGk5nzIYVftnmHkH2SGRWHWt/qgmCKOwEn9QCaTY1eikpqCTJmLDZ/b1Mod/W8jfMsdycaREZWVNSf1IgLMXMisqKATagaNJD6+qi0aeoudMkNMNsOoK8C4bbnBGGKULux1OGSF7S49NRsq4y6CbS73i8uaXqiDrZloDKqZtjyB8X1yk3MpwpMDi7V00XW+cTFJY6m9EtZnrx/02+jY35CVvbCc5n0BtrhRHE5gRsKF0+cOfMmT1rcNJwtUq/CoLUHc7yisA6OqpPIfBiHdt3b/ehRmtP/b9Oi+G0tyJ29hUmRNruCot9HHWQFePeiUf/pdQrrLAJCLRi+QhV3nMmf23jhi4KU4QNO9mwKw2Vb0PwNEl8xn2AnNjD+08mZtsbzKNMVIBaGSwGEFREHiYPdOseYxMkD3MUk5j6l/38DeUIFqQHIGY9DefnWFMLIZo7OnVTPltJjmi/SGZKbMHLxpwze0/A0Kng3fpirigPwyXg+9ndbNkY3iolHcgVOlD3k2wlA24zsQRaAjzkQNuO2/F+hDIyhK4wVfb6b0an1YLsqZElmiZ19IxQud768NnvOTvoyz53MTt0ZH+R62Dh/bmHavja4frHOryzo6WPiZTMBvS6ZLAAoyWTc/0c/v2GOyDu4rti02wzDDuMS+d5+ZAi8pMTvtxilX/h86wkIQJ7Wt4FKkbSe57raDucnMNg2YqXSZLftKVM6uasvRwSXligCcCNd4j8Of8sUJjknVoJ0izDbm2QHDnMGtiI/SFZHea7WrqCzVbeRZUEDbMRTGzWXPBIPM3JBQZGuOWzTfkfFGHydJSH9SNR5chQeyganRnvAjjdoDkR7ISpCPReNjDQC7rKidWFuvc9mBuJtkRa7MUAJsEIV3qQq2MtVXXG/AKE/3GPJ0pfdPyuQxYPgBpPukNuf5eH6w4ut7bfBgrbUtaG1fZws6y96VkRC7c9GX/hQuiTezWtJxFJXzdVuF4ff5TyVf5J4kK5467HP4UdjTbuctUMH5/y6aDxfNFyGYJoWsddW3pWZ9q7kor/d2CCZyK2XDzNKpq3ZsxDSZ/4XHf33XOMaIDNzC+rSWbDiY8WTE3ofcYaJ++Q/FqFNrqLnou7dN8KPN4wwLtBmKPmTHeULGvd9eKpD/m7IYrPJaUBxK16+LNA98T6c+kfceRHE2vdwps7t03+LHDhegiLIp0kJmZKozDvA6Q+8Qeh/7EdOhFEAifVJGMc6PLcJ3NXkSdahQUnUssPVyxuT+BLqwZaPzZjeMtHlxg1ul3y7/J8j5W2MQW+7zZIygF3fu63FARIISY+DNTv8kIJxgbMoznKJ+/TzbH69+lt5KBJWQf+L7vhSADtQxUhIUJIlrx6IodMQ4RCkad4MUZ1Q646T0Wulh40IAVjAnDC/Gt8kvmEfuVwhHYEfZoTku2k6xktjVxdoSs8ekNg9jcH2s91khBbmrjpgRrCyXv8sN/UO4AsEwcEVb86SpL/RNtXJeJKc41TSuNtPSt6iMZnbN75yA/FLLMZoibZNoU9SjdX0ztb31lDFuq1Bahz5rrGE9MAeYHN/lNBpFBo2OKvGPwOVbQliys0EVc8Vtahapaxgjq1BJ9h/sq2tALKzoneZrVyUZ/rNUC1ry5mH2l1jeC3DX91Ch9f2dgfk01dIAa1EPscgc+iewBYxTxMBzVIXArGgVuEfiPHFIHPwDEYDi6TCZfKwdJ38WlR6Zy6eKJGJQ6ukkloh27SbNkDBSFzfg4VILjHckunjfBjymUnnR7JRRg9fq0sXNZpc1JJnZrY/sXGORuDsks63I/aGTbRhTPZsoAcjS4IXy4qCk36y6lVbUkoRATsZJfBZsDyRclot4/n4bSjVpPuA/fvUMVGiRCHPiMXZC5uOKSeffh456xFFhIuedwG6LMFfC0SxtQxI8C5f+Gaokc9pG1t9amkODhf3c7CI6M5IiLFSwsdOok1nx/3/Y3NW89Mr7tG1yVEW2Yjx+wWMHWqFKHcuTlsYJ2V/Kw9UW/9Iu0QmcbFRh21Dxw23NoBGER23J9puF5Wbr4Z835DlOF8z6VZ3WQjC/i+OZXd5VWTaUnZHQbxKvZ3CFEE0B+0+9ZlfFn/c3uVdG8MkJjZH6PcdcqB/FjtW1wq/goGPQ1f1uy+6QGEFNsvkWzGZngdwyFnpk9tOrHyJnVZ35hVIZ6phzzmzMmJWW6AihLjurmwvmY574W14de+wzkG7pnfP+oNbDi56LRzA8VxJ9msvhaovD2t7nSS+oddl9iUaIV+b8e44JNKXOMLwB1E1HG7QgyMrFxlpBPf/4Patas1Z1126y2zwkKnUT6EXPwL2Y0Q6GoUzkUog/56KNIv5Rb1qkBvnX4C/VbWEvQAR79vI0Sj6N1rm1Vafs2yCS7v80pE7TFbXcXPfbGugn6GVwYiryzDXYKZbYVC2V75fhaJlSOGkftcE8Elw0ZnAb2qibldIvd/B6K8KZG8Nz+b22bvEUBuDt7ojguIHFUDxj7HqV28Moet1sHRgSOx0REARmNTczD1YK15aqMerEzMUtvXkbElGGLXf5KIsvE5KQASnGc5WnOHb6J0rp1rfc0xdTKkpVaqz5cDvlPAiK5gk2uQxKlJFqMe7m9YzX4hoF0w3hQVEAweWJopi4hnJ16jcn7VmnMvmAtRjdd9Gk5xhbxknvXTRvuTiacQs1pouHZcHy7ySNFQbwR93dhgD7HKKIPPLpgDBT9RmmlAJWENlLEt4mVfXR7tSwHe1SrpGO4/0yO5uVAJJHMNgx7B5Olc2Lb0ZGpxJ6665DWJ7RxwfM50eO6rHalAPpmyrfWpexNa4jnWFodYxlpWEzVKSnMZRSS88oaovbhprb6bKBIyWGm9evjuReH4Maer0f/OC4jAGjthoJ+usDrf4bR0WDXPoUppqgJ4bFKzCHTCLWYrgISbxEjP7leBQztrGIz8iYs2yr7P+xMYv2fcbwrAFQPhL37k966ueUYPJhmi7oUzEpJ8DGtcvD3jFkzL+26hgQ5EvdgYVLEzHehWyfBoiA1arXEc4wOge4eQJLdcxaJGL5GHZuxfU00jI8fDGcdHKC6RpBY5QstogzMuJS5rSoxUp4zbU/leySyUek7IpU8kaVDq8RrA0yvmAdcIIF7ocapB++FUk++Jy3v6U9lWdTZMiH3iLnzv9BW+vnSKAb5B+nF3yRnM0kVy9E+DSDc97sEWoMrXyDkF0WohrybXh1om0enw3t6Lm2gAVrXIqzLJRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsQdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAA0b6Pf0kZbM9i9Cou44R8jio8s8+s9MZz1BUyPmLRvtV95Bet5EJNNlDTdWA5yVAHAJxdeXULZn1gc2USWwaPG5bpYVYhF1QTWoUnR090j+uw7p3hrQA5xnmMXptwlCliUmbp20HSp52ZMLfKPibMHKup9gEHoYq+lxa9YXvRqwFsORyl2NZKQyT+5Y+By9zlUGnAdlNKDnI9U4HKiBnlU3mpfOUEt8JU9Vxmkx7T80AeNqK6gRgYp9TPi6qkCtK7LXMSlhmL0mqJfjqC4zI4T4zmb6YRWdxkv0w9FgtFwPUF85eSgpbuvkn7l3rzbu03MrzudGAmA2bYmFiEWHREttl8nZwmN/wwPnzEoQaRyBG4GqxJZLq7h9YZoCq6auBBz8PbyS155st0ZnPSv+SJ3mn7rl8JxLGqKmouLwB5FwsPdVO63kuFdsC3RHXiK+5BsNxABcby/aay4N7ozGyW8f37sh1IlIdSYniABw4S76j/imRj+ciIOrhYM4rogx4J+foyIl+ONEyqmp1OTf1GXyYP0pBLXzd/na+vbcyX71xHaUaUhj3lgBMH13G5HLH9cbVTDPiBVPgikInVbxJsyZuGxhbqLA2tcYW0m4U5PfDgd+wWGDIvBd4BBs2rUpdn94qOJy7IRC/6NPIj329/t8kjJyfObcKl+3T82WbhsBJj4JIylPv2XwgHkb+7ftlKoURb9tEET7Q2qtyLMNTM82mmbcU09tlBxqWLHjZoxMlSsLIgDGFj4/OMsjklZojGxZfbQl5BnnFgPhOp4qxpCNLY+0UYDzIkrzTPKEeEcOX7oKZ+UuOA+8k2yVPodp8hmNuSGJvY3yxT/ez7XEmJhAO8+0jHoKRFbHF1p8dGW70P9btp0X8cqnr79M3kWHhTw1zTfRXjR/GF8fvTohTPs+rLSXPEKMY0+df2befMdhilAxUazuEwxZMDxA23fCgp+77JKYip+qpVpSSUd0XcFWYp/NSYw4Ee2ogMqa9TnjLoYIKc36uhIRD0UvkePjWUhDU6ZR9XAqE5jSI2NHrGi/AsZG1eRg/gN6KXRd3RBbYx2rxmL3n7NRx2+vMqBdxO8AXF5p4IAMLA4tdC2pAuzGfn11RE5HYblIlfbhggIp8QLM5lHrUwghmbKFu+x44Y+GAAh+9a13r2i5h05sSVpigf0vD1B+XHtccc+xmw6tc4Vacvr/PbIzPErifLgbamAIziqfu09X1uzijPwaYBQYCr7uBjwudsejQPpYnd3tZHRG9njBFl9hZpPfk3VspZPnmGf4y9Zm/y4Pa0Wp10nCA8BiZLEWeFpDRrBJKzr5yZXWzSuM3wXLpOtAFc6JheqPpWnxCj9L1uWQxoJNMMCfV+Fyc4vIJT0g3qjpcvJMjDarLCgkKHCZLKk28OfoC1Zf5B5kvJ6aFM/MkmTYVvcXLLC9oqay2EtbC47JdiJ4iP5tnVddL3oB7Yzc8y1ePTxUSss0zdayfHZcC0+eZZHyzvaqo0XXj3VHHlPQQfWaCt/vB4tXBZai1KQQk8ZzOw/pfaoN56GDjUxYi+5kvx+5NvnTamxH1KWm4gGk1kKHQaXihn28hu/R8PwvE57Bohq+iGTm4rwebhsVMSnTrFGxNvhL//jfyayAVl5i3hich8B3RnlqGCQpuZZyx9H3wOtCJOeQ+TftXOE3ptBJuZU0Xj34RKQp0y+s61SiCGXcvHmzqhDW8Y9BsZ/rqL7xtKIXU3BCGU7Rx4ASZ2OYwnx5oHkFPLeNZDjtynUhfZGwI5LcOwiCtcntTOn5cJLkBP26jQGoHjEew+HWEaXNbB6qcZVK6qoCbaYUwx+URSG89h5IXTX5AQuU4OOCXuRZvljUUbvezOPdr5ghWQyCkx1Vl0ZHF8Tx2OSCJAvzdbgg1krM/+ne6M6fhmIo8S0oT1lIr/zKpZWdTpDMAFAF9S+oFcOFP2bmqY35j87HWqFSUww8bo0Zd0p8zRCnBVK/a0vBbkyQoXCVWEyu0ZhlEk9c0aLv0cylM/OOyun+BALdyv5xPSzKKurB97QsePIUNavTUP1/7FMutglUPxMqITukfKo0FeP3YpOQpsOMirRME7MIutdgLTRgQiUWm2mvyKAAIgPKFneWzAC+3C0uTR9r6aVkJwytyBjf8O3ksD8MAgBDPZLNmrA6IyPVdx2qxefQSXGKous7pjm/AF74Drt5niLIdJ+jsIt58KWt/b78fjr1muA0k51LxJXD4Sott/Irr69yNgQNCtcSY1TIwdHNfLly1HI5FGy9aj6DGRKtsNjcxIkexsAm+jorfnto7A6gid6BJSTtwSk4pKugsbJy6GevservffJpAFkxR9myuxXoQyfoZaCI6VTAGfZ4TIFc3nFhXl06BCdFOBhO8O3Lpbz2GZpDOHe4iqtm8jVOO0o5YjFCqCZw5plT6JjOKf3nZkt429iLOXcQa+0iLcDypMyEz+y51xWD0XZT0xoB4e+LHZRHCX7aNNtRa1c3P6Ddp0XJEy50smZgFNB49lFoklaV3FDtrRprGtFElVFTr3CQ5sAX6PI5u6TZUxegGf/XEfMhn1sFkMuMWRjfrvz7+7f+bV6HV0+pSKbI6ZErroGp/nv2dRRhESiG6uVRWLRM24CLbtKMjUk0piXi/wIvaKlH6Okz/+q+I4O0F+nBPHVOO1wc6CLVx9Br1xY4DFs0dOTtJCNLXq9xAX1oS4e47u57gusK+v1SGlDbSLVIYHpbkMPJ0I9t++glo2iW5svTXb86NPQsv6Ruwe4Ai2/5DEhJJoYAfWlP4fawisb4Km5rWsBw1tywk53ch5hN6KIxNhDYSQ8YA1ORRaZ27/Tk8LxkeLvuIItNzBHD8Bat1itc8NoWmIkm8gt+CdTJ2JdxldaUWfOe78YVvKxuJI6uyMM8iV9bUfoFt8c0uMxrAUAv7erYx5xOUvCNC45O2NpCTXBX7cMQg92F3iIzuuvtJWpMMZf3yhjA9q+t2P+wJdJs/m9ZCmFA03ePg0K7YOKNiGH5Zc9vhWzeCwvfFT+Kkgh44apucalOJoL+Dp/B9fWJYdFEPgJyKm+ncUFBXx7etguZFVb6+E4y/fMBIUvB8hCnxEGP/RM/SwLCk4UU9xrRj/swtgYRBrZlahjS3O2uDoklaSeU12MhatnmWsW7wWDLa/w6ketMCljX35Ljf+QqO3AAsnhw5eNdZkGnvMOM051uUvqOhxgy1kg4mzWyMOril7KE0/eoX2PNlvoqpTFaHhkMEhmsyqW0f1MEZ/Y0T7CVlaU2z1B5DW4ecFma0px6aQHzo4YSQ8mD4K0O2XANTY+MZkWgmPIjm3be+alGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 2048, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651935366.115559, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAIAPGD0CWZg/n47DPVe+L7+hl7G+5u/GvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -1.048, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7QMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIe0ljtI6iQ8CUhpRSlIwBbJRLc4wBdJRHQFgM4mkWRA91fZQoaAZoCWgPQwgfuTXptiJYwJSGlFKUaBVLcWgWR0BYGcvZh8YydX2UKGgGaAloD0MI39xfPe54WMCUhpRSlGgVS0NoFkdAWCHTkQwsXnV9lChoBmgJaA9DCEOqKF5ln1DAlIaUUpRoFUtBaBZHQFgpJz1bqyJ1fZQoaAZoCWgPQwhHIF7XrwdxwJSGlFKUaBVLRWgWR0BYMVP8AJb/dX2UKGgGaAloD0MIUYTU7ew8bMCUhpRSlGgVS0xoFkdAWDqBreqJdnV9lChoBmgJaA9DCB0dVyM7RWjAlIaUUpRoFUtjaBZHQFhGRnvlU6x1fZQoaAZoCWgPQwg2j8NgfoRkwJSGlFKUaBVLVmgWR0BYUC4Wk8A8dX2UKGgGaAloD0MI5sk1BXLKdMCUhpRSlGgVS3toFkdAWF7JkoWpInV9lChoBmgJaA9DCDUnLzJBdHbAlIaUUpRoFUtbaBZHQFhpYfW+XZ51fZQoaAZoCWgPQwiySX7Er3tXwJSGlFKUaBVLV2gWR0BYc6V2Rq46dX2UKGgGaAloD0MIe4ZwzLJldMCUhpRSlGgVS0doFkdAWHyVB2OhkHV9lChoBmgJaA9DCCV2bW+31V7AlIaUUpRoFUtWaBZHQFiGpT/ACXB1fZQoaAZoCWgPQwjHE0Gch8xdwJSGlFKUaBVLTGgWR0BYj6SHM2WIdX2UKGgGaAloD0MIrp/+s2a7ccCUhpRSlGgVS2BoFkdAWJsrTYukDnV9lChoBmgJaA9DCNo8DoP5mH3AlIaUUpRoFUtaaBZHQFilmMOwxFl1fZQoaAZoCWgPQwhZFHZR9JpVwJSGlFKUaBVLmWgWR0BYuDLGJemfdX2UKGgGaAloD0MIoUs49HZKgcCUhpRSlGgVS2hoFkdAWMTDye7L+3V9lChoBmgJaA9DCGpnmNpSH2LAlIaUUpRoFUtWaBZHQFjO1aGHpKV1fZQoaAZoCWgPQwiSQe4iTHpZwJSGlFKUaBVLT2gWR0BY1/IwM6RydX2UKGgGaAloD0MIwAMDCJ+pccCUhpRSlGgVS1toFkdAWOKrp7kXDXV9lChoBmgJaA9DCEJ8YMc/s3DAlIaUUpRoFUtTaBZHQFjtGWUr08N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f552cd41e6a31e6d03c2fe70141d286d6c3b9e60a35ea3577acf66fba093f6ad
|
3 |
+
size 146349
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b259544d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b25954560>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b259545f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b25954680>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4b25954710>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4b259547a0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b25954830>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4b259548c0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b25954950>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b259549e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b25954a70>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f4b25929270>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAGKOJvpaON4SHt/iCi5gFmiFGi3Ftw9P+cygFbgarc1r+fvaPI9idrA8TpCBcowh2p503/mYiojKDGQG9OGk5nzIYVftnmHkH2SGRWHWt/qgmCKOwEn9QCaTY1eikpqCTJmLDZ/b1Mod/W8jfMsdycaREZWVNSf1IgLMXMisqKATagaNJD6+qi0aeoudMkNMNsOoK8C4bbnBGGKULux1OGSF7S49NRsq4y6CbS73i8uaXqiDrZloDKqZtjyB8X1yk3MpwpMDi7V00XW+cTFJY6m9EtZnrx/02+jY35CVvbCc5n0BtrhRHE5gRsKF0+cOfMmT1rcNJwtUq/CoLUHc7yisA6OqpPIfBiHdt3b/ehRmtP/b9Oi+G0tyJ29hUmRNruCot9HHWQFePeiUf/pdQrrLAJCLRi+QhV3nMmf23jhi4KU4QNO9mwKw2Vb0PwNEl8xn2AnNjD+08mZtsbzKNMVIBaGSwGEFREHiYPdOseYxMkD3MUk5j6l/38DeUIFqQHIGY9DefnWFMLIZo7OnVTPltJjmi/SGZKbMHLxpwze0/A0Kng3fpirigPwyXg+9ndbNkY3iolHcgVOlD3k2wlA24zsQRaAjzkQNuO2/F+hDIyhK4wVfb6b0an1YLsqZElmiZ19IxQud768NnvOTvoyz53MTt0ZH+R62Dh/bmHavja4frHOryzo6WPiZTMBvS6ZLAAoyWTc/0c/v2GOyDu4rti02wzDDuMS+d5+ZAi8pMTvtxilX/h86wkIQJ7Wt4FKkbSe57raDucnMNg2YqXSZLftKVM6uasvRwSXligCcCNd4j8Of8sUJjknVoJ0izDbm2QHDnMGtiI/SFZHea7WrqCzVbeRZUEDbMRTGzWXPBIPM3JBQZGuOWzTfkfFGHydJSH9SNR5chQeyganRnvAjjdoDkR7ISpCPReNjDQC7rKidWFuvc9mBuJtkRa7MUAJsEIV3qQq2MtVXXG/AKE/3GPJ0pfdPyuQxYPgBpPukNuf5eH6w4ut7bfBgrbUtaG1fZws6y96VkRC7c9GX/hQuiTezWtJxFJXzdVuF4ff5TyVf5J4kK5467HP4UdjTbuctUMH5/y6aDxfNFyGYJoWsddW3pWZ9q7kor/d2CCZyK2XDzNKpq3ZsxDSZ/4XHf33XOMaIDNzC+rSWbDiY8WTE3ofcYaJ++Q/FqFNrqLnou7dN8KPN4wwLtBmKPmTHeULGvd9eKpD/m7IYrPJaUBxK16+LNA98T6c+kfceRHE2vdwps7t03+LHDhegiLIp0kJmZKozDvA6Q+8Qeh/7EdOhFEAifVJGMc6PLcJ3NXkSdahQUnUssPVyxuT+BLqwZaPzZjeMtHlxg1ul3y7/J8j5W2MQW+7zZIygF3fu63FARIISY+DNTv8kIJxgbMoznKJ+/TzbH69+lt5KBJWQf+L7vhSADtQxUhIUJIlrx6IodMQ4RCkad4MUZ1Q646T0Wulh40IAVjAnDC/Gt8kvmEfuVwhHYEfZoTku2k6xktjVxdoSs8ekNg9jcH2s91khBbmrjpgRrCyXv8sN/UO4AsEwcEVb86SpL/RNtXJeJKc41TSuNtPSt6iMZnbN75yA/FLLMZoibZNoU9SjdX0ztb31lDFuq1Bahz5rrGE9MAeYHN/lNBpFBo2OKvGPwOVbQliys0EVc8Vtahapaxgjq1BJ9h/sq2tALKzoneZrVyUZ/rNUC1ry5mH2l1jeC3DX91Ch9f2dgfk01dIAa1EPscgc+iewBYxTxMBzVIXArGgVuEfiPHFIHPwDEYDi6TCZfKwdJ38WlR6Zy6eKJGJQ6ukkloh27SbNkDBSFzfg4VILjHckunjfBjymUnnR7JRRg9fq0sXNZpc1JJnZrY/sXGORuDsks63I/aGTbRhTPZsoAcjS4IXy4qCk36y6lVbUkoRATsZJfBZsDyRclot4/n4bSjVpPuA/fvUMVGiRCHPiMXZC5uOKSeffh456xFFhIuedwG6LMFfC0SxtQxI8C5f+Gaokc9pG1t9amkODhf3c7CI6M5IiLFSwsdOok1nx/3/Y3NW89Mr7tG1yVEW2Yjx+wWMHWqFKHcuTlsYJ2V/Kw9UW/9Iu0QmcbFRh21Dxw23NoBGER23J9puF5Wbr4Z835DlOF8z6VZ3WQjC/i+OZXd5VWTaUnZHQbxKvZ3CFEE0B+0+9ZlfFn/c3uVdG8MkJjZH6PcdcqB/FjtW1wq/goGPQ1f1uy+6QGEFNsvkWzGZngdwyFnpk9tOrHyJnVZ35hVIZ6phzzmzMmJWW6AihLjurmwvmY574W14de+wzkG7pnfP+oNbDi56LRzA8VxJ9msvhaovD2t7nSS+oddl9iUaIV+b8e44JNKXOMLwB1E1HG7QgyMrFxlpBPf/4Patas1Z1126y2zwkKnUT6EXPwL2Y0Q6GoUzkUog/56KNIv5Rb1qkBvnX4C/VbWEvQAR79vI0Sj6N1rm1Vafs2yCS7v80pE7TFbXcXPfbGugn6GVwYiryzDXYKZbYVC2V75fhaJlSOGkftcE8Elw0ZnAb2qibldIvd/B6K8KZG8Nz+b22bvEUBuDt7ojguIHFUDxj7HqV28Moet1sHRgSOx0REARmNTczD1YK15aqMerEzMUtvXkbElGGLXf5KIsvE5KQASnGc5WnOHb6J0rp1rfc0xdTKkpVaqz5cDvlPAiK5gk2uQxKlJFqMe7m9YzX4hoF0w3hQVEAweWJopi4hnJ16jcn7VmnMvmAtRjdd9Gk5xhbxknvXTRvuTiacQs1pouHZcHy7ySNFQbwR93dhgD7HKKIPPLpgDBT9RmmlAJWENlLEt4mVfXR7tSwHe1SrpGO4/0yO5uVAJJHMNgx7B5Olc2Lb0ZGpxJ6665DWJ7RxwfM50eO6rHalAPpmyrfWpexNa4jnWFodYxlpWEzVKSnMZRSS88oaovbhprb6bKBIyWGm9evjuReH4Maer0f/OC4jAGjthoJ+usDrf4bR0WDXPoUppqgJ4bFKzCHTCLWYrgISbxEjP7leBQztrGIz8iYs2yr7P+xMYv2fcbwrAFQPhL37k966ueUYPJhmi7oUzEpJ8DGtcvD3jFkzL+26hgQ5EvdgYVLEzHehWyfBoiA1arXEc4wOge4eQJLdcxaJGL5GHZuxfU00jI8fDGcdHKC6RpBY5QstogzMuJS5rSoxUp4zbU/leySyUek7IpU8kaVDq8RrA0yvmAdcIIF7ocapB++FUk++Jy3v6U9lWdTZMiH3iLnzv9BW+vnSKAb5B+nF3yRnM0kVy9E+DSDc97sEWoMrXyDkF0WohrybXh1om0enw3t6Lm2gAVrXIqzLJRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsQdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": "RandomState(MT19937)"
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAA0b6Pf0kZbM9i9Cou44R8jio8s8+s9MZz1BUyPmLRvtV95Bet5EJNNlDTdWA5yVAHAJxdeXULZn1gc2USWwaPG5bpYVYhF1QTWoUnR090j+uw7p3hrQA5xnmMXptwlCliUmbp20HSp52ZMLfKPibMHKup9gEHoYq+lxa9YXvRqwFsORyl2NZKQyT+5Y+By9zlUGnAdlNKDnI9U4HKiBnlU3mpfOUEt8JU9Vxmkx7T80AeNqK6gRgYp9TPi6qkCtK7LXMSlhmL0mqJfjqC4zI4T4zmb6YRWdxkv0w9FgtFwPUF85eSgpbuvkn7l3rzbu03MrzudGAmA2bYmFiEWHREttl8nZwmN/wwPnzEoQaRyBG4GqxJZLq7h9YZoCq6auBBz8PbyS155st0ZnPSv+SJ3mn7rl8JxLGqKmouLwB5FwsPdVO63kuFdsC3RHXiK+5BsNxABcby/aay4N7ozGyW8f37sh1IlIdSYniABw4S76j/imRj+ciIOrhYM4rogx4J+foyIl+ONEyqmp1OTf1GXyYP0pBLXzd/na+vbcyX71xHaUaUhj3lgBMH13G5HLH9cbVTDPiBVPgikInVbxJsyZuGxhbqLA2tcYW0m4U5PfDgd+wWGDIvBd4BBs2rUpdn94qOJy7IRC/6NPIj329/t8kjJyfObcKl+3T82WbhsBJj4JIylPv2XwgHkb+7ftlKoURb9tEET7Q2qtyLMNTM82mmbcU09tlBxqWLHjZoxMlSsLIgDGFj4/OMsjklZojGxZfbQl5BnnFgPhOp4qxpCNLY+0UYDzIkrzTPKEeEcOX7oKZ+UuOA+8k2yVPodp8hmNuSGJvY3yxT/ez7XEmJhAO8+0jHoKRFbHF1p8dGW70P9btp0X8cqnr79M3kWHhTw1zTfRXjR/GF8fvTohTPs+rLSXPEKMY0+df2befMdhilAxUazuEwxZMDxA23fCgp+77JKYip+qpVpSSUd0XcFWYp/NSYw4Ee2ogMqa9TnjLoYIKc36uhIRD0UvkePjWUhDU6ZR9XAqE5jSI2NHrGi/AsZG1eRg/gN6KXRd3RBbYx2rxmL3n7NRx2+vMqBdxO8AXF5p4IAMLA4tdC2pAuzGfn11RE5HYblIlfbhggIp8QLM5lHrUwghmbKFu+x44Y+GAAh+9a13r2i5h05sSVpigf0vD1B+XHtccc+xmw6tc4Vacvr/PbIzPErifLgbamAIziqfu09X1uzijPwaYBQYCr7uBjwudsejQPpYnd3tZHRG9njBFl9hZpPfk3VspZPnmGf4y9Zm/y4Pa0Wp10nCA8BiZLEWeFpDRrBJKzr5yZXWzSuM3wXLpOtAFc6JheqPpWnxCj9L1uWQxoJNMMCfV+Fyc4vIJT0g3qjpcvJMjDarLCgkKHCZLKk28OfoC1Zf5B5kvJ6aFM/MkmTYVvcXLLC9oqay2EtbC47JdiJ4iP5tnVddL3oB7Yzc8y1ePTxUSss0zdayfHZcC0+eZZHyzvaqo0XXj3VHHlPQQfWaCt/vB4tXBZai1KQQk8ZzOw/pfaoN56GDjUxYi+5kvx+5NvnTamxH1KWm4gGk1kKHQaXihn28hu/R8PwvE57Bohq+iGTm4rwebhsVMSnTrFGxNvhL//jfyayAVl5i3hich8B3RnlqGCQpuZZyx9H3wOtCJOeQ+TftXOE3ptBJuZU0Xj34RKQp0y+s61SiCGXcvHmzqhDW8Y9BsZ/rqL7xtKIXU3BCGU7Rx4ASZ2OYwnx5oHkFPLeNZDjtynUhfZGwI5LcOwiCtcntTOn5cJLkBP26jQGoHjEew+HWEaXNbB6qcZVK6qoCbaYUwx+URSG89h5IXTX5AQuU4OOCXuRZvljUUbvezOPdr5ghWQyCkx1Vl0ZHF8Tx2OSCJAvzdbgg1krM/+ne6M6fhmIo8S0oT1lIr/zKpZWdTpDMAFAF9S+oFcOFP2bmqY35j87HWqFSUww8bo0Zd0p8zRCnBVK/a0vBbkyQoXCVWEyu0ZhlEk9c0aLv0cylM/OOyun+BALdyv5xPSzKKurB97QsePIUNavTUP1/7FMutglUPxMqITukfKo0FeP3YpOQpsOMirRME7MIutdgLTRgQiUWm2mvyKAAIgPKFneWzAC+3C0uTR9r6aVkJwytyBjf8O3ksD8MAgBDPZLNmrA6IyPVdx2qxefQSXGKous7pjm/AF74Drt5niLIdJ+jsIt58KWt/b78fjr1muA0k51LxJXD4Sott/Irr69yNgQNCtcSY1TIwdHNfLly1HI5FGy9aj6DGRKtsNjcxIkexsAm+jorfnto7A6gid6BJSTtwSk4pKugsbJy6GevservffJpAFkxR9myuxXoQyfoZaCI6VTAGfZ4TIFc3nFhXl06BCdFOBhO8O3Lpbz2GZpDOHe4iqtm8jVOO0o5YjFCqCZw5plT6JjOKf3nZkt429iLOXcQa+0iLcDypMyEz+y51xWD0XZT0xoB4e+LHZRHCX7aNNtRa1c3P6Ddp0XJEy50smZgFNB49lFoklaV3FDtrRprGtFElVFTr3CQ5sAX6PI5u6TZUxegGf/XEfMhn1sFkMuMWRjfrvz7+7f+bV6HV0+pSKbI6ZErroGp/nv2dRRhESiG6uVRWLRM24CLbtKMjUk0piXi/wIvaKlH6Okz/+q+I4O0F+nBPHVOO1wc6CLVx9Br1xY4DFs0dOTtJCNLXq9xAX1oS4e47u57gusK+v1SGlDbSLVIYHpbkMPJ0I9t++glo2iW5svTXb86NPQsv6Ruwe4Ai2/5DEhJJoYAfWlP4fawisb4Km5rWsBw1tywk53ch5hN6KIxNhDYSQ8YA1ORRaZ27/Tk8LxkeLvuIItNzBHD8Bat1itc8NoWmIkm8gt+CdTJ2JdxldaUWfOe78YVvKxuJI6uyMM8iV9bUfoFt8c0uMxrAUAv7erYx5xOUvCNC45O2NpCTXBX7cMQg92F3iIzuuvtJWpMMZf3yhjA9q+t2P+wJdJs/m9ZCmFA03ePg0K7YOKNiGH5Zc9vhWzeCwvfFT+Kkgh44apucalOJoL+Dp/B9fWJYdFEPgJyKm+ncUFBXx7etguZFVb6+E4y/fMBIUvB8hCnxEGP/RM/SwLCk4UU9xrRj/swtgYRBrZlahjS3O2uDoklaSeU12MhatnmWsW7wWDLa/w6ketMCljX35Ljf+QqO3AAsnhw5eNdZkGnvMOM051uUvqOhxgy1kg4mzWyMOril7KE0/eoX2PNlvoqpTFaHhkMEhmsyqW0f1MEZ/Y0T7CVlaU2z1B5DW4ecFma0px6aQHzo4YSQ8mD4K0O2XANTY+MZkWgmPIjm3be+alGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": "RandomState(MT19937)"
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 2048,
|
46 |
+
"_total_timesteps": 1000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651935366.115559,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAIAPGD0CWZg/n47DPVe+L7+hl7G+5u/GvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -1.048,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWV7QMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIe0ljtI6iQ8CUhpRSlIwBbJRLc4wBdJRHQFgM4mkWRA91fZQoaAZoCWgPQwgfuTXptiJYwJSGlFKUaBVLcWgWR0BYGcvZh8YydX2UKGgGaAloD0MI39xfPe54WMCUhpRSlGgVS0NoFkdAWCHTkQwsXnV9lChoBmgJaA9DCEOqKF5ln1DAlIaUUpRoFUtBaBZHQFgpJz1bqyJ1fZQoaAZoCWgPQwhHIF7XrwdxwJSGlFKUaBVLRWgWR0BYMVP8AJb/dX2UKGgGaAloD0MIUYTU7ew8bMCUhpRSlGgVS0xoFkdAWDqBreqJdnV9lChoBmgJaA9DCB0dVyM7RWjAlIaUUpRoFUtjaBZHQFhGRnvlU6x1fZQoaAZoCWgPQwg2j8NgfoRkwJSGlFKUaBVLVmgWR0BYUC4Wk8A8dX2UKGgGaAloD0MI5sk1BXLKdMCUhpRSlGgVS3toFkdAWF7JkoWpInV9lChoBmgJaA9DCDUnLzJBdHbAlIaUUpRoFUtbaBZHQFhpYfW+XZ51fZQoaAZoCWgPQwiySX7Er3tXwJSGlFKUaBVLV2gWR0BYc6V2Rq46dX2UKGgGaAloD0MIe4ZwzLJldMCUhpRSlGgVS0doFkdAWHyVB2OhkHV9lChoBmgJaA9DCCV2bW+31V7AlIaUUpRoFUtWaBZHQFiGpT/ACXB1fZQoaAZoCWgPQwjHE0Gch8xdwJSGlFKUaBVLTGgWR0BYj6SHM2WIdX2UKGgGaAloD0MIrp/+s2a7ccCUhpRSlGgVS2BoFkdAWJsrTYukDnV9lChoBmgJaA9DCNo8DoP5mH3AlIaUUpRoFUtaaBZHQFilmMOwxFl1fZQoaAZoCWgPQwhZFHZR9JpVwJSGlFKUaBVLmWgWR0BYuDLGJemfdX2UKGgGaAloD0MIoUs49HZKgcCUhpRSlGgVS2hoFkdAWMTDye7L+3V9lChoBmgJaA9DCGpnmNpSH2LAlIaUUpRoFUtWaBZHQFjO1aGHpKV1fZQoaAZoCWgPQwiSQe4iTHpZwJSGlFKUaBVLT2gWR0BY1/IwM6RydX2UKGgGaAloD0MIwAMDCJ+pccCUhpRSlGgVS1toFkdAWOKrp7kXDXV9lChoBmgJaA9DCEJ8YMc/s3DAlIaUUpRoFUtTaBZHQFjtGWUr08N1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 10,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a2bd6364dced49a7d519586eb5054801528f6e37ea4ec65e391f2dce68a3d90
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb44427b99313f140142def94dce0a8eda2043275ea991d9e18ea1e5b314e147
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec6fbae72f88dd0171bb4edbe40dc0a1150c8ffadb72567e31c429968e9161c6
|
3 |
+
size 134021
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -877.4754903559573, "std_reward": 273.815878320539, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T15:05:26.897765"}
|