File size: 1,896 Bytes
941d7da 2f72512 fc1712c 417d189 fc1712c 941d7da fc1712c 2f72512 417d189 27aa9b5 fc1712c 27aa9b5 fc1712c 27aa9b5 fc1712c 417d189 27aa9b5 fc1712c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: mit
base_model: flax-community/spanish-t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: augmented_t5_pictos
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# augmented_t5_pictos
This model is a fine-tuned version of [flax-community/spanish-t5-small](https://huggingface.co/flax-community/spanish-t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3716
- Rouge1: 44.6732
- Rouge2: 29.5427
- Rougel: 44.3407
- Rougelsum: 44.3626
- Gen Len: 8.2906
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.1475 | 1.0 | 527 | 1.7342 | 37.3065 | 21.7821 | 36.9349 | 36.853 | 8.2799 |
| 1.6495 | 2.0 | 1054 | 1.5130 | 42.3167 | 26.6311 | 41.9494 | 41.8617 | 8.1496 |
| 1.445 | 3.0 | 1581 | 1.4049 | 43.5614 | 28.5147 | 43.2416 | 43.2528 | 8.2585 |
| 1.2756 | 4.0 | 2108 | 1.3716 | 44.6732 | 29.5427 | 44.3407 | 44.3626 | 8.2906 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|