TJKlein commited on
Commit
2153e83
·
1 Parent(s): 2eed696

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -0
README.md CHANGED
@@ -24,6 +24,9 @@ The model was trained on a random collection of **English** sentences from Wikip
24
  # Model Usage
25
  ### Example 1) - Sentence Similarity
26
 
 
 
 
27
  ```python
28
  from transformers import AutoTokenizer, AutoModel
29
  import torch.nn as nn
@@ -69,8 +72,13 @@ cos_sim = sim(embeddings.unsqueeze(1),
69
  print(f"Distance: {cos_sim[0,1].detach().item()}")
70
  ```
71
 
 
 
72
  ### Example 2) - Clustering
73
 
 
 
 
74
  ```python
75
  from transformers import AutoTokenizer, AutoModel
76
  import torch.nn as nn
@@ -146,9 +154,13 @@ umap_plot.points(umap_model, labels = np.array(classes),theme='fire')
146
 
147
  ![UMAP Cluster](https://raw.githubusercontent.com/TJKlein/tjklein.github.io/master/images/miCSE_UMAP_small2.png)
148
 
 
149
 
150
  ### Example 3) - Using [SentenceTransformers](https://www.sbert.net/)
151
 
 
 
 
152
  ```python
153
  from sentence_transformers import SentenceTransformer, util
154
  from sentence_transformers import models
@@ -182,6 +194,7 @@ for i in range(len(sentences1)):
182
  print(f"Similarity {cosine_scores[i][i]:.2f}: {sentences1[i]} << vs. >> {sentences2[i]}")
183
  ```
184
 
 
185
 
186
  # Benchmark
187
 
 
24
  # Model Usage
25
  ### Example 1) - Sentence Similarity
26
 
27
+ <details>
28
+ <summary> Click to expand </summary>
29
+
30
  ```python
31
  from transformers import AutoTokenizer, AutoModel
32
  import torch.nn as nn
 
72
  print(f"Distance: {cos_sim[0,1].detach().item()}")
73
  ```
74
 
75
+ </details>
76
+
77
  ### Example 2) - Clustering
78
 
79
+ <details>
80
+ <summary> Click to expand </summary>
81
+
82
  ```python
83
  from transformers import AutoTokenizer, AutoModel
84
  import torch.nn as nn
 
154
 
155
  ![UMAP Cluster](https://raw.githubusercontent.com/TJKlein/tjklein.github.io/master/images/miCSE_UMAP_small2.png)
156
 
157
+ </details>
158
 
159
  ### Example 3) - Using [SentenceTransformers](https://www.sbert.net/)
160
 
161
+ <details>
162
+ <summary> Click to expand </summary>
163
+
164
  ```python
165
  from sentence_transformers import SentenceTransformer, util
166
  from sentence_transformers import models
 
194
  print(f"Similarity {cosine_scores[i][i]:.2f}: {sentences1[i]} << vs. >> {sentences2[i]}")
195
  ```
196
 
197
+ </details>
198
 
199
  # Benchmark
200