--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: BERT-BankingClassifier results: [] datasets: - legacy-datasets/banking77 --- # BERT-BankingClassifier This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2867 - Accuracy: 0.9326 ## Model description This model is a BERT (bert-base-uncased) model fine-tuned using the Banking77 dataset for text classification tasks. Banking77 is a dataset designed to categorize customer support messages in the banking and finance domain into 77 distinct categories. This model is specifically tailored for classifying customer complaints and inquiries in the banking sector, helping to assign messages to the correct categories effectively. label_map = { 0: "activate_my_card", 1: "age_limit", 2: "apple_pay_or_google_pay", 3: "atm_support", 4: "automatic_top_up", 5: "balance_not_updated_after_bank_transfer", 6: "balance_not_updated_after_cheque_or_cash_deposit", 7: "beneficiary_not_allowed", 8: "cancel_transfer", 9: "card_about_to_expire", 10: "card_acceptance", 11: "card_arrival", 12: "card_delivery_estimate", 13: "card_linking", 14: "card_not_working", 15: "card_payment_fee_charged", 16: "card_payment_not_recognised", 17: "card_payment_wrong_exchange_rate", 18: "card_swallowed", 19: "cash_withdrawal_charge", 20: "cash_withdrawal_not_recognised", 21: "change_pin", 22: "compromised_card", 23: "contactless_not_working", 24: "country_support", 25: "declined_card_payment", 26: "declined_cash_withdrawal", 27: "declined_transfer", 28: "direct_debit_payment_not_recognised", 29: "disposable_card_limits", 30: "edit_personal_details", 31: "exchange_charge", 32: "exchange_rate", 33: "exchange_via_app", 34: "extra_charge_on_statement", 35: "failed_transfer", 36: "fiat_currency_support", 37: "get_disposable_virtual_card", 38: "get_physical_card", 39: "getting_spare_card", 40: "getting_virtual_card", 41: "lost_or_stolen_card", 42: "lost_or_stolen_phone", 43: "order_physical_card", 44: "passcode_forgotten", 45: "pending_card_payment", 46: "pending_cash_withdrawal", 47: "pending_top_up", 48: "pending_transfer", 49: "pin_blocked", 50: "receiving_money", 51: "refund_not_showing_up", 52: "request_refund", 53: "reverted_card_payment", 54: "supported_cards_and_currencies", 55: "terminate_account", 56: "top_up_by_bank_transfer_charge", 57: "top_up_by_card_charge", 58: "top_up_by_cash_or_cheque", 59: "top_up_failed", 60: "top_up_limits", 61: "top_up_reverted", 62: "topping_up_by_card", 63: "transaction_charged_twice", 64: "transfer_fee_charged", 65: "transfer_into_account", 66: "transfer_not_received_by_recipient", 67: "transfer_timing", 68: "unable_to_verify_identity", 69: "verify_my_identity", 70: "verify_source_of_funds", 71: "verify_top_up", 72: "virtual_card_not_working", 73: "visa_or_mastercard", 74: "why_verify_identity", 75: "wrong_amount_of_cash_received", 76: "wrong_exchange_rate_for_cash_withdrawal" } ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.5368 | 1.0 | 732 | 0.5945 | 0.8862 | | 0.6013 | 2.0 | 1464 | 0.3156 | 0.9283 | | 0.1507 | 3.0 | 2196 | 0.2895 | 0.9290 | | 0.089 | 4.0 | 2928 | 0.2867 | 0.9326 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3