--- language: [] library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:557850 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: Alibaba-NLP/gte-base-en-v1.5 datasets: [] metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max widget: - source_sentence: Mwanamume aliyepangwa vizuri anasimama kwa mguu mmoja karibu na pwani safi ya bahari. sentences: - mtu anacheka wakati wa kufua nguo - Mwanamume fulani yuko nje karibu na ufuo wa bahari. - Mwanamume fulani ameketi kwenye sofa yake. - source_sentence: Mwanamume mwenye ngozi nyeusi akivuta sigareti karibu na chombo cha taka cha kijani. sentences: - Karibu na chombo cha taka mwanamume huyo alisimama na kuvuta sigareti - Kitanda ni chafu. - Alipokuwa kwenye dimbwi la kuogelea mvulana huyo mwenye ugonjwa wa albino alijihadhari na jua kupita kiasi - source_sentence: Mwanamume kijana mwenye nywele nyekundu anaketi ukutani akisoma gazeti huku mwanamke na msichana mchanga wakipita. sentences: - Mwanamume aliyevalia shati la bluu amegonga ukuta kando ya barabara na gari la bluu na gari nyekundu lenye maji nyuma. - Mwanamume mchanga anatazama gazeti huku wanawake wawili wakipita karibu naye. - Mwanamume huyo mchanga analala huku Mama akimwongoza binti yake kwenye bustani. - source_sentence: Wasichana wako nje. sentences: - Wasichana wawili wakisafiri kwenye sehemu ya kusisimua. - Kuna watu watatu wakiongoza gari linaloweza kugeuzwa-geuzwa wakipita watu wengine. - Wasichana watatu wamesimama pamoja katika chumba, mmoja anasikiliza, mwingine anaandika ukutani na wa tatu anaongea nao. - source_sentence: Mwanamume aliyevalia koti la bluu la kuzuia upepo, amelala uso chini kwenye benchi ya bustani, akiwa na chupa ya pombe iliyofungwa kwenye mojawapo ya miguu ya benchi. sentences: - Mwanamume amelala uso chini kwenye benchi ya bustani. - Mwanamke anaunganisha uzi katika mipira kando ya rundo la mipira - Mwanamume fulani anacheza dansi kwenye klabu hiyo akifungua chupa. pipeline_tag: sentence-similarity model-index: - name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 768 type: sts-test-768 metrics: - type: pearson_cosine value: 0.7043347377864616 name: Pearson Cosine - type: spearman_cosine value: 0.6964343322647693 name: Spearman Cosine - type: pearson_manhattan value: 0.6909108013214409 name: Pearson Manhattan - type: spearman_manhattan value: 0.6918757829517036 name: Spearman Manhattan - type: pearson_euclidean value: 0.6929234868177542 name: Pearson Euclidean - type: spearman_euclidean value: 0.6937500609344119 name: Spearman Euclidean - type: pearson_dot value: 0.70124411699517 name: Pearson Dot - type: spearman_dot value: 0.6918131755587139 name: Spearman Dot - type: pearson_max value: 0.7043347377864616 name: Pearson Max - type: spearman_max value: 0.6964343322647693 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 512 type: sts-test-512 metrics: - type: pearson_cosine value: 0.7024370656682521 name: Pearson Cosine - type: spearman_cosine value: 0.6960997397306026 name: Spearman Cosine - type: pearson_manhattan value: 0.6937121372484026 name: Pearson Manhattan - type: spearman_manhattan value: 0.6942680507505805 name: Spearman Manhattan - type: pearson_euclidean value: 0.6958879339072266 name: Pearson Euclidean - type: spearman_euclidean value: 0.6965067811247516 name: Spearman Euclidean - type: pearson_dot value: 0.6739585793600888 name: Pearson Dot - type: spearman_dot value: 0.6635969331239819 name: Spearman Dot - type: pearson_max value: 0.7024370656682521 name: Pearson Max - type: spearman_max value: 0.6965067811247516 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 256 type: sts-test-256 metrics: - type: pearson_cosine value: 0.6975572102129655 name: Pearson Cosine - type: spearman_cosine value: 0.6922084123611896 name: Spearman Cosine - type: pearson_manhattan value: 0.7012769244476563 name: Pearson Manhattan - type: spearman_manhattan value: 0.7002000478097333 name: Spearman Manhattan - type: pearson_euclidean value: 0.7033203116396916 name: Pearson Euclidean - type: spearman_euclidean value: 0.7027884000644871 name: Spearman Euclidean - type: pearson_dot value: 0.6353839704898405 name: Pearson Dot - type: spearman_dot value: 0.6242173680909447 name: Spearman Dot - type: pearson_max value: 0.7033203116396916 name: Pearson Max - type: spearman_max value: 0.7027884000644871 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 128 type: sts-test-128 metrics: - type: pearson_cosine value: 0.6909605436368886 name: Pearson Cosine - type: spearman_cosine value: 0.6880114885304113 name: Spearman Cosine - type: pearson_manhattan value: 0.7044693468919807 name: Pearson Manhattan - type: spearman_manhattan value: 0.7001174190718876 name: Spearman Manhattan - type: pearson_euclidean value: 0.7063530897910422 name: Pearson Euclidean - type: spearman_euclidean value: 0.7028721535481625 name: Spearman Euclidean - type: pearson_dot value: 0.5846530941942547 name: Pearson Dot - type: spearman_dot value: 0.5728728042034709 name: Spearman Dot - type: pearson_max value: 0.7063530897910422 name: Pearson Max - type: spearman_max value: 0.7028721535481625 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 64 type: sts-test-64 metrics: - type: pearson_cosine value: 0.680996097859508 name: Pearson Cosine - type: spearman_cosine value: 0.6803001320954455 name: Spearman Cosine - type: pearson_manhattan value: 0.7053262249895214 name: Pearson Manhattan - type: spearman_manhattan value: 0.6987184531053297 name: Spearman Manhattan - type: pearson_euclidean value: 0.7061173611755747 name: Pearson Euclidean - type: spearman_euclidean value: 0.7003828247494553 name: Spearman Euclidean - type: pearson_dot value: 0.5177214664781289 name: Pearson Dot - type: spearman_dot value: 0.5019887605325859 name: Spearman Dot - type: pearson_max value: 0.7061173611755747 name: Pearson Max - type: spearman_max value: 0.7003828247494553 name: Spearman Max --- # SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sartifyllc/swahili-gte-base-en-v1.5-nli-matryoshka") # Run inference sentences = [ 'Mwanamume aliyevalia koti la bluu la kuzuia upepo, amelala uso chini kwenye benchi ya bustani, akiwa na chupa ya pombe iliyofungwa kwenye mojawapo ya miguu ya benchi.', 'Mwanamume amelala uso chini kwenye benchi ya bustani.', 'Mwanamume fulani anacheza dansi kwenye klabu hiyo akifungua chupa.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-test-768` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7043 | | **spearman_cosine** | **0.6964** | | pearson_manhattan | 0.6909 | | spearman_manhattan | 0.6919 | | pearson_euclidean | 0.6929 | | spearman_euclidean | 0.6938 | | pearson_dot | 0.7012 | | spearman_dot | 0.6918 | | pearson_max | 0.7043 | | spearman_max | 0.6964 | #### Semantic Similarity * Dataset: `sts-test-512` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7024 | | **spearman_cosine** | **0.6961** | | pearson_manhattan | 0.6937 | | spearman_manhattan | 0.6943 | | pearson_euclidean | 0.6959 | | spearman_euclidean | 0.6965 | | pearson_dot | 0.674 | | spearman_dot | 0.6636 | | pearson_max | 0.7024 | | spearman_max | 0.6965 | #### Semantic Similarity * Dataset: `sts-test-256` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.6976 | | **spearman_cosine** | **0.6922** | | pearson_manhattan | 0.7013 | | spearman_manhattan | 0.7002 | | pearson_euclidean | 0.7033 | | spearman_euclidean | 0.7028 | | pearson_dot | 0.6354 | | spearman_dot | 0.6242 | | pearson_max | 0.7033 | | spearman_max | 0.7028 | #### Semantic Similarity * Dataset: `sts-test-128` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.691 | | **spearman_cosine** | **0.688** | | pearson_manhattan | 0.7045 | | spearman_manhattan | 0.7001 | | pearson_euclidean | 0.7064 | | spearman_euclidean | 0.7029 | | pearson_dot | 0.5847 | | spearman_dot | 0.5729 | | pearson_max | 0.7064 | | spearman_max | 0.7029 | #### Semantic Similarity * Dataset: `sts-test-64` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.681 | | **spearman_cosine** | **0.6803** | | pearson_manhattan | 0.7053 | | spearman_manhattan | 0.6987 | | pearson_euclidean | 0.7061 | | spearman_euclidean | 0.7004 | | pearson_dot | 0.5177 | | spearman_dot | 0.502 | | pearson_max | 0.7061 | | spearman_max | 0.7004 | ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs
Click to expand | Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |:------:|:-----:|:-------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| | 0.0029 | 100 | 13.2716 | - | - | - | - | - | | 0.0057 | 200 | 9.83 | - | - | - | - | - | | 0.0086 | 300 | 9.9047 | - | - | - | - | - | | 0.0115 | 400 | 7.5137 | - | - | - | - | - | | 0.0143 | 500 | 7.6419 | - | - | - | - | - | | 0.0172 | 600 | 6.9603 | - | - | - | - | - | | 0.0201 | 700 | 7.3009 | - | - | - | - | - | | 0.0229 | 800 | 7.1397 | - | - | - | - | - | | 0.0258 | 900 | 8.1352 | - | - | - | - | - | | 0.0287 | 1000 | 7.5945 | - | - | - | - | - | | 0.0315 | 1100 | 7.0476 | - | - | - | - | - | | 0.0344 | 1200 | 5.3356 | - | - | - | - | - | | 0.0373 | 1300 | 5.1529 | - | - | - | - | - | | 0.0402 | 1400 | 4.9726 | - | - | - | - | - | | 0.0430 | 1500 | 5.1683 | - | - | - | - | - | | 0.0459 | 1600 | 4.7945 | - | - | - | - | - | | 0.0488 | 1700 | 4.9624 | - | - | - | - | - | | 0.0516 | 1800 | 4.4254 | - | - | - | - | - | | 0.0545 | 1900 | 4.4379 | - | - | - | - | - | | 0.0574 | 2000 | 4.0327 | - | - | - | - | - | | 0.0602 | 2100 | 3.5138 | - | - | - | - | - | | 0.0631 | 2200 | 4.5055 | - | - | - | - | - | | 0.0660 | 2300 | 3.8966 | - | - | - | - | - | | 0.0688 | 2400 | 4.4884 | - | - | - | - | - | | 0.0717 | 2500 | 3.5825 | - | - | - | - | - | | 0.0746 | 2600 | 4.0155 | - | - | - | - | - | | 0.0774 | 2700 | 4.9842 | - | - | - | - | - | | 0.0803 | 2800 | 4.7732 | - | - | - | - | - | | 0.0832 | 2900 | 4.5095 | - | - | - | - | - | | 0.0860 | 3000 | 4.2526 | - | - | - | - | - | | 0.0889 | 3100 | 4.033 | - | - | - | - | - | | 0.0918 | 3200 | 4.0052 | - | - | - | - | - | | 0.0946 | 3300 | 3.197 | - | - | - | - | - | | 0.0975 | 3400 | 3.3423 | - | - | - | - | - | | 0.1004 | 3500 | 2.9528 | - | - | - | - | - | | 0.1033 | 3600 | 3.9315 | - | - | - | - | - | | 0.1061 | 3700 | 3.7733 | - | - | - | - | - | | 0.1090 | 3800 | 3.5153 | - | - | - | - | - | | 0.1119 | 3900 | 4.1326 | - | - | - | - | - | | 0.1147 | 4000 | 5.2179 | - | - | - | - | - | | 0.1176 | 4100 | 6.4314 | - | - | - | - | - | | 0.1205 | 4200 | 6.3485 | - | - | - | - | - | | 0.1233 | 4300 | 4.7771 | - | - | - | - | - | | 0.1262 | 4400 | 4.9055 | - | - | - | - | - | | 0.1291 | 4500 | 3.9025 | - | - | - | - | - | | 0.1319 | 4600 | 4.4638 | - | - | - | - | - | | 0.1348 | 4700 | 5.0049 | - | - | - | - | - | | 0.1377 | 4800 | 4.3124 | - | - | - | - | - | | 0.1405 | 4900 | 4.0027 | - | - | - | - | - | | 0.1434 | 5000 | 4.3173 | - | - | - | - | - | | 0.1463 | 5100 | 3.6629 | - | - | - | - | - | | 0.1491 | 5200 | 4.2759 | - | - | - | - | - | | 0.1520 | 5300 | 3.4621 | - | - | - | - | - | | 0.1549 | 5400 | 3.9251 | - | - | - | - | - | | 0.1577 | 5500 | 4.2294 | - | - | - | - | - | | 0.1606 | 5600 | 3.6244 | - | - | - | - | - | | 0.1635 | 5700 | 4.283 | - | - | - | - | - | | 0.1664 | 5800 | 4.4665 | - | - | - | - | - | | 0.1692 | 5900 | 4.956 | - | - | - | - | - | | 0.1721 | 6000 | 4.795 | - | - | - | - | - | | 0.1750 | 6100 | 4.998 | - | - | - | - | - | | 0.1778 | 6200 | 5.3316 | - | - | - | - | - | | 0.1807 | 6300 | 5.2247 | - | - | - | - | - | | 0.1836 | 6400 | 4.6554 | - | - | - | - | - | | 0.1864 | 6500 | 5.2474 | - | - | - | - | - | | 0.1893 | 6600 | 5.1168 | - | - | - | - | - | | 0.1922 | 6700 | 5.1372 | - | - | - | - | - | | 0.1950 | 6800 | 4.1564 | - | - | - | - | - | | 0.1979 | 6900 | 4.6997 | - | - | - | - | - | | 0.2008 | 7000 | 4.1854 | - | - | - | - | - | | 0.2036 | 7100 | 4.4574 | - | - | - | - | - | | 0.2065 | 7200 | 4.1859 | - | - | - | - | - | | 0.2094 | 7300 | 4.8306 | - | - | - | - | - | | 0.2122 | 7400 | 4.4487 | - | - | - | - | - | | 0.2151 | 7500 | 4.4606 | - | - | - | - | - | | 0.2180 | 7600 | 4.4222 | - | - | - | - | - | | 0.2208 | 7700 | 4.7836 | - | - | - | - | - | | 0.2237 | 7800 | 4.1475 | - | - | - | - | - | | 0.2266 | 7900 | 5.1679 | - | - | - | - | - | | 0.2294 | 8000 | 5.0106 | - | - | - | - | - | | 0.2323 | 8100 | 4.1899 | - | - | - | - | - | | 0.2352 | 8200 | 4.9873 | - | - | - | - | - | | 0.2381 | 8300 | 4.3656 | - | - | - | - | - | | 0.2409 | 8400 | 4.6117 | - | - | - | - | - | | 0.2438 | 8500 | 4.1785 | - | - | - | - | - | | 0.2467 | 8600 | 3.7809 | - | - | - | - | - | | 0.2495 | 8700 | 4.9116 | - | - | - | - | - | | 0.2524 | 8800 | 4.553 | - | - | - | - | - | | 0.2553 | 8900 | 4.3178 | - | - | - | - | - | | 0.2581 | 9000 | 5.6111 | - | - | - | - | - | | 0.2610 | 9100 | 5.4219 | - | - | - | - | - | | 0.2639 | 9200 | 5.5628 | - | - | - | - | - | | 0.2667 | 9300 | 4.4221 | - | - | - | - | - | | 0.2696 | 9400 | 4.7988 | - | - | - | - | - | | 0.2725 | 9500 | 4.9361 | - | - | - | - | - | | 0.2753 | 9600 | 4.7225 | - | - | - | - | - | | 0.2782 | 9700 | 4.7258 | - | - | - | - | - | | 0.2811 | 9800 | 4.7071 | - | - | - | - | - | | 0.2839 | 9900 | 4.5519 | - | - | - | - | - | | 0.2868 | 10000 | 4.5354 | - | - | - | - | - | | 0.2897 | 10100 | 4.3893 | - | - | - | - | - | | 0.2925 | 10200 | 4.7848 | - | - | - | - | - | | 0.2954 | 10300 | 4.7195 | - | - | - | - | - | | 0.2983 | 10400 | 4.0155 | - | - | - | - | - | | 0.3012 | 10500 | 5.1602 | - | - | - | - | - | | 0.3040 | 10600 | 4.6345 | - | - | - | - | - | | 0.3069 | 10700 | 5.39 | - | - | - | - | - | | 0.3098 | 10800 | 4.7974 | - | - | - | - | - | | 0.3126 | 10900 | 4.9736 | - | - | - | - | - | | 0.3155 | 11000 | 5.0949 | - | - | - | - | - | | 0.3184 | 11100 | 4.6704 | - | - | - | - | - | | 0.3212 | 11200 | 4.7001 | - | - | - | - | - | | 0.3241 | 11300 | 4.2913 | - | - | - | - | - | | 0.3270 | 11400 | 4.7536 | - | - | - | - | - | | 0.3298 | 11500 | 4.8349 | - | - | - | - | - | | 0.3327 | 11600 | 4.2567 | - | - | - | - | - | | 0.3356 | 11700 | 4.6754 | - | - | - | - | - | | 0.3384 | 11800 | 4.8534 | - | - | - | - | - | | 0.3413 | 11900 | 4.7486 | - | - | - | - | - | | 0.3442 | 12000 | 4.9194 | - | - | - | - | - | | 0.3470 | 12100 | 4.4572 | - | - | - | - | - | | 0.3499 | 12200 | 4.6173 | - | - | - | - | - | | 0.3528 | 12300 | 5.1292 | - | - | - | - | - | | 0.3556 | 12400 | 4.6138 | - | - | - | - | - | | 0.3585 | 12500 | 4.6884 | - | - | - | - | - | | 0.3614 | 12600 | 4.4245 | - | - | - | - | - | | 0.3643 | 12700 | 4.7534 | - | - | - | - | - | | 0.3671 | 12800 | 4.7027 | - | - | - | - | - | | 0.3700 | 12900 | 4.5186 | - | - | - | - | - | | 0.3729 | 13000 | 3.8917 | - | - | - | - | - | | 0.3757 | 13100 | 4.507 | - | - | - | - | - | | 0.3786 | 13200 | 5.4866 | - | - | - | - | - | | 0.3815 | 13300 | 4.0424 | - | - | - | - | - | | 0.3843 | 13400 | 4.4017 | - | - | - | - | - | | 0.3872 | 13500 | 4.0016 | - | - | - | - | - | | 0.3901 | 13600 | 4.0695 | - | - | - | - | - | | 0.3929 | 13700 | 4.4957 | - | - | - | - | - | | 0.3958 | 13800 | 4.4655 | - | - | - | - | - | | 0.3987 | 13900 | 4.5717 | - | - | - | - | - | | 0.4015 | 14000 | 4.134 | - | - | - | - | - | | 0.4044 | 14100 | 4.2704 | - | - | - | - | - | | 0.4073 | 14200 | 4.7712 | - | - | - | - | - | | 0.4101 | 14300 | 4.3946 | - | - | - | - | - | | 0.4130 | 14400 | 4.5848 | - | - | - | - | - | | 0.4159 | 14500 | 4.4655 | - | - | - | - | - | | 0.4187 | 14600 | 4.278 | - | - | - | - | - | | 0.4216 | 14700 | 4.2877 | - | - | - | - | - | | 0.4245 | 14800 | 3.9299 | - | - | - | - | - | | 0.4274 | 14900 | 4.7078 | - | - | - | - | - | | 0.4302 | 15000 | 4.8527 | - | - | - | - | - | | 0.4331 | 15100 | 4.3476 | - | - | - | - | - | | 0.4360 | 15200 | 4.2012 | - | - | - | - | - | | 0.4388 | 15300 | 4.1766 | - | - | - | - | - | | 0.4417 | 15400 | 3.9842 | - | - | - | - | - | | 0.4446 | 15500 | 4.1244 | - | - | - | - | - | | 0.4474 | 15600 | 4.7983 | - | - | - | - | - | | 0.4503 | 15700 | 4.2341 | - | - | - | - | - | | 0.4532 | 15800 | 4.9829 | - | - | - | - | - | | 0.4560 | 15900 | 4.0221 | - | - | - | - | - | | 0.4589 | 16000 | 4.1082 | - | - | - | - | - | | 0.4618 | 16100 | 3.8922 | - | - | - | - | - | | 0.4646 | 16200 | 4.5382 | - | - | - | - | - | | 0.4675 | 16300 | 4.4428 | - | - | - | - | - | | 0.4704 | 16400 | 3.9087 | - | - | - | - | - | | 0.4732 | 16500 | 3.7465 | - | - | - | - | - | | 0.4761 | 16600 | 4.149 | - | - | - | - | - | | 0.4790 | 16700 | 4.5691 | - | - | - | - | - | | 0.4818 | 16800 | 3.8776 | - | - | - | - | - | | 0.4847 | 16900 | 3.7354 | - | - | - | - | - | | 0.4876 | 17000 | 4.25 | - | - | - | - | - | | 0.4904 | 17100 | 4.4119 | - | - | - | - | - | | 0.4933 | 17200 | 4.2319 | - | - | - | - | - | | 0.4962 | 17300 | 4.3736 | - | - | - | - | - | | 0.4991 | 17400 | 4.5345 | - | - | - | - | - | | 0.5019 | 17500 | 4.1824 | - | - | - | - | - | | 0.5048 | 17600 | 4.0033 | - | - | - | - | - | | 0.5077 | 17700 | 4.277 | - | - | - | - | - | | 0.5105 | 17800 | 4.3553 | - | - | - | - | - | | 0.5134 | 17900 | 3.9528 | - | - | - | - | - | | 0.5163 | 18000 | 4.068 | - | - | - | - | - | | 0.5191 | 18100 | 4.0464 | - | - | - | - | - | | 0.5220 | 18200 | 4.1665 | - | - | - | - | - | | 0.5249 | 18300 | 3.7445 | - | - | - | - | - | | 0.5277 | 18400 | 4.2248 | - | - | - | - | - | | 0.5306 | 18500 | 3.9295 | - | - | - | - | - | | 0.5335 | 18600 | 3.546 | - | - | - | - | - | | 0.5363 | 18700 | 3.7463 | - | - | - | - | - | | 0.5392 | 18800 | 3.9798 | - | - | - | - | - | | 0.5421 | 18900 | 4.4773 | - | - | - | - | - | | 0.5449 | 19000 | 4.3534 | - | - | - | - | - | | 0.5478 | 19100 | 4.2347 | - | - | - | - | - | | 0.5507 | 19200 | 3.8113 | - | - | - | - | - | | 0.5535 | 19300 | 4.4689 | - | - | - | - | - | | 0.5564 | 19400 | 4.2188 | - | - | - | - | - | | 0.5593 | 19500 | 4.1266 | - | - | - | - | - | | 0.5622 | 19600 | 3.9222 | - | - | - | - | - | | 0.5650 | 19700 | 4.38 | - | - | - | - | - | | 0.5679 | 19800 | 4.4557 | - | - | - | - | - | | 0.5708 | 19900 | 4.7566 | - | - | - | - | - | | 0.5736 | 20000 | 3.8922 | - | - | - | - | - | | 0.5765 | 20100 | 4.0263 | - | - | - | - | - | | 0.5794 | 20200 | 3.9258 | - | - | - | - | - | | 0.5822 | 20300 | 4.3767 | - | - | - | - | - | | 0.5851 | 20400 | 4.1211 | - | - | - | - | - | | 0.5880 | 20500 | 4.3083 | - | - | - | - | - | | 0.5908 | 20600 | 4.4544 | - | - | - | - | - | | 0.5937 | 20700 | 4.0118 | - | - | - | - | - | | 0.5966 | 20800 | 3.9136 | - | - | - | - | - | | 0.5994 | 20900 | 3.8614 | - | - | - | - | - | | 0.6023 | 21000 | 3.8057 | - | - | - | - | - | | 0.6052 | 21100 | 4.4934 | - | - | - | - | - | | 0.6080 | 21200 | 3.9206 | - | - | - | - | - | | 0.6109 | 21300 | 4.43 | - | - | - | - | - | | 0.6138 | 21400 | 4.0576 | - | - | - | - | - | | 0.6166 | 21500 | 3.9019 | - | - | - | - | - | | 0.6195 | 21600 | 4.4216 | - | - | - | - | - | | 0.6224 | 21700 | 4.0959 | - | - | - | - | - | | 0.6253 | 21800 | 3.8756 | - | - | - | - | - | | 0.6281 | 21900 | 4.7791 | - | - | - | - | - | | 0.6310 | 22000 | 3.6284 | - | - | - | - | - | | 0.6339 | 22100 | 4.5534 | - | - | - | - | - | | 0.6367 | 22200 | 4.18 | - | - | - | - | - | | 0.6396 | 22300 | 4.3002 | - | - | - | - | - | | 0.6425 | 22400 | 3.7162 | - | - | - | - | - | | 0.6453 | 22500 | 4.8495 | - | - | - | - | - | | 0.6482 | 22600 | 4.2966 | - | - | - | - | - | | 0.6511 | 22700 | 3.7718 | - | - | - | - | - | | 0.6539 | 22800 | 4.2257 | - | - | - | - | - | | 0.6568 | 22900 | 3.9821 | - | - | - | - | - | | 0.6597 | 23000 | 4.0853 | - | - | - | - | - | | 0.6625 | 23100 | 3.6124 | - | - | - | - | - | | 0.6654 | 23200 | 3.732 | - | - | - | - | - | | 0.6683 | 23300 | 4.3821 | - | - | - | - | - | | 0.6711 | 23400 | 4.229 | - | - | - | - | - | | 0.6740 | 23500 | 4.2589 | - | - | - | - | - | | 0.6769 | 23600 | 4.4975 | - | - | - | - | - | | 0.6797 | 23700 | 3.8062 | - | - | - | - | - | | 0.6826 | 23800 | 3.6924 | - | - | - | - | - | | 0.6855 | 23900 | 3.7736 | - | - | - | - | - | | 0.6883 | 24000 | 3.7815 | - | - | - | - | - | | 0.6912 | 24100 | 4.1192 | - | - | - | - | - | | 0.6941 | 24200 | 4.2336 | - | - | - | - | - | | 0.6970 | 24300 | 4.1145 | - | - | - | - | - | | 0.6998 | 24400 | 4.0681 | - | - | - | - | - | | 0.7027 | 24500 | 4.0492 | - | - | - | - | - | | 0.7056 | 24600 | 3.7831 | - | - | - | - | - | | 0.7084 | 24700 | 4.2445 | - | - | - | - | - | | 0.7113 | 24800 | 3.9308 | - | - | - | - | - | | 0.7142 | 24900 | 3.8705 | - | - | - | - | - | | 0.7170 | 25000 | 3.6998 | - | - | - | - | - | | 0.7199 | 25100 | 3.4736 | - | - | - | - | - | | 0.7228 | 25200 | 3.9971 | - | - | - | - | - | | 0.7256 | 25300 | 3.8292 | - | - | - | - | - | | 0.7285 | 25400 | 3.8499 | - | - | - | - | - | | 0.7314 | 25500 | 3.8732 | - | - | - | - | - | | 0.7342 | 25600 | 3.9409 | - | - | - | - | - | | 0.7371 | 25700 | 4.4416 | - | - | - | - | - | | 0.7400 | 25800 | 3.663 | - | - | - | - | - | | 0.7428 | 25900 | 3.9786 | - | - | - | - | - | | 0.7457 | 26000 | 4.1781 | - | - | - | - | - | | 0.7486 | 26100 | 3.692 | - | - | - | - | - | | 0.7514 | 26200 | 3.2601 | - | - | - | - | - | | 0.7543 | 26300 | 7.1759 | - | - | - | - | - | | 0.7572 | 26400 | 7.0459 | - | - | - | - | - | | 0.7601 | 26500 | 6.1797 | - | - | - | - | - | | 0.7629 | 26600 | 6.2055 | - | - | - | - | - | | 0.7658 | 26700 | 6.1403 | - | - | - | - | - | | 0.7687 | 26800 | 5.703 | - | - | - | - | - | | 0.7715 | 26900 | 6.1283 | - | - | - | - | - | | 0.7744 | 27000 | 5.71 | - | - | - | - | - | | 0.7773 | 27100 | 5.3105 | - | - | - | - | - | | 0.7801 | 27200 | 5.4202 | - | - | - | - | - | | 0.7830 | 27300 | 5.2964 | - | - | - | - | - | | 0.7859 | 27400 | 5.4852 | - | - | - | - | - | | 0.7887 | 27500 | 5.241 | - | - | - | - | - | | 0.7916 | 27600 | 5.4322 | - | - | - | - | - | | 0.7945 | 27700 | 5.6285 | - | - | - | - | - | | 0.7973 | 27800 | 5.0215 | - | - | - | - | - | | 0.8002 | 27900 | 5.2433 | - | - | - | - | - | | 0.8031 | 28000 | 4.9617 | - | - | - | - | - | | 0.8059 | 28100 | 4.9479 | - | - | - | - | - | | 0.8088 | 28200 | 4.9077 | - | - | - | - | - | | 0.8117 | 28300 | 4.853 | - | - | - | - | - | | 0.8145 | 28400 | 4.6727 | - | - | - | - | - | | 0.8174 | 28500 | 4.9987 | - | - | - | - | - | | 0.8203 | 28600 | 4.8405 | - | - | - | - | - | | 0.8232 | 28700 | 4.9627 | - | - | - | - | - | | 0.8260 | 28800 | 4.5608 | - | - | - | - | - | | 0.8289 | 28900 | 5.0802 | - | - | - | - | - | | 0.8318 | 29000 | 4.9069 | - | - | - | - | - | | 0.8346 | 29100 | 4.8605 | - | - | - | - | - | | 0.8375 | 29200 | 4.6424 | - | - | - | - | - | | 0.8404 | 29300 | 4.7813 | - | - | - | - | - | | 0.8432 | 29400 | 4.5925 | - | - | - | - | - | | 0.8461 | 29500 | 4.7081 | - | - | - | - | - | | 0.8490 | 29600 | 4.4319 | - | - | - | - | - | | 0.8518 | 29700 | 4.7291 | - | - | - | - | - | | 0.8547 | 29800 | 4.749 | - | - | - | - | - | | 0.8576 | 29900 | 4.6148 | - | - | - | - | - | | 0.8604 | 30000 | 4.2549 | - | - | - | - | - | | 0.8633 | 30100 | 4.3415 | - | - | - | - | - | | 0.8662 | 30200 | 4.1999 | - | - | - | - | - | | 0.8690 | 30300 | 4.4298 | - | - | - | - | - | | 0.8719 | 30400 | 4.3612 | - | - | - | - | - | | 0.8748 | 30500 | 4.4834 | - | - | - | - | - | | 0.8776 | 30600 | 4.4774 | - | - | - | - | - | | 0.8805 | 30700 | 4.2524 | - | - | - | - | - | | 0.8834 | 30800 | 4.5562 | - | - | - | - | - | | 0.8863 | 30900 | 4.5261 | - | - | - | - | - | | 0.8891 | 31000 | 4.0262 | - | - | - | - | - | | 0.8920 | 31100 | 4.1109 | - | - | - | - | - | | 0.8949 | 31200 | 4.1955 | - | - | - | - | - | | 0.8977 | 31300 | 4.3169 | - | - | - | - | - | | 0.9006 | 31400 | 4.5862 | - | - | - | - | - | | 0.9035 | 31500 | 4.5503 | - | - | - | - | - | | 0.9063 | 31600 | 4.2587 | - | - | - | - | - | | 0.9092 | 31700 | 4.0028 | - | - | - | - | - | | 0.9121 | 31800 | 4.3575 | - | - | - | - | - | | 0.9149 | 31900 | 4.1033 | - | - | - | - | - | | 0.9178 | 32000 | 4.2877 | - | - | - | - | - | | 0.9207 | 32100 | 3.9537 | - | - | - | - | - | | 0.9235 | 32200 | 4.107 | - | - | - | - | - | | 0.9264 | 32300 | 4.3288 | - | - | - | - | - | | 0.9293 | 32400 | 4.102 | - | - | - | - | - | | 0.9321 | 32500 | 4.1751 | - | - | - | - | - | | 0.9350 | 32600 | 3.7919 | - | - | - | - | - | | 0.9379 | 32700 | 4.0939 | - | - | - | - | - | | 0.9407 | 32800 | 4.1822 | - | - | - | - | - | | 0.9436 | 32900 | 3.959 | - | - | - | - | - | | 0.9465 | 33000 | 3.9173 | - | - | - | - | - | | 0.9493 | 33100 | 4.3087 | - | - | - | - | - | | 0.9522 | 33200 | 4.1239 | - | - | - | - | - | | 0.9551 | 33300 | 4.1012 | - | - | - | - | - | | 0.9580 | 33400 | 3.9988 | - | - | - | - | - | | 0.9608 | 33500 | 4.1478 | - | - | - | - | - | | 0.9637 | 33600 | 4.1669 | - | - | - | - | - | | 0.9666 | 33700 | 4.0398 | - | - | - | - | - | | 0.9694 | 33800 | 3.9814 | - | - | - | - | - | | 0.9723 | 33900 | 4.3764 | - | - | - | - | - | | 0.9752 | 34000 | 4.2847 | - | - | - | - | - | | 0.9780 | 34100 | 3.9461 | - | - | - | - | - | | 0.9809 | 34200 | 4.3377 | - | - | - | - | - | | 0.9838 | 34300 | 3.8114 | - | - | - | - | - | | 0.9866 | 34400 | 4.0827 | - | - | - | - | - | | 0.9895 | 34500 | 4.0014 | - | - | - | - | - | | 0.9924 | 34600 | 4.3964 | - | - | - | - | - | | 0.9952 | 34700 | 3.9103 | - | - | - | - | - | | 0.9981 | 34800 | 4.0363 | - | - | - | - | - | | 1.0 | 34866 | - | 0.6880 | 0.6922 | 0.6961 | 0.6803 | 0.6964 |
### Framework Versions - Python: 3.11.9 - Sentence Transformers: 3.0.1 - Transformers: 4.40.1 - PyTorch: 2.3.0+cu121 - Accelerate: 0.29.3 - Datasets: 2.19.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```